
Revniuk O. A., Zagorodna N. V., Kozak R. O., Karpinski M. P., Flud L. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 162–174

162

Computer systems and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

DOI: https://doi.org/10.15276/aait.07.2024.12

UDC 004.056

The improvement of web-application SDL process to prevent

Insecure Design vulnerabilities

Oleksandr A. Revniuk1)
ORCID: https://orcid.org/0009-0005-0511-5354; revo0708@gmail.com

Nataliya V. Zagorodna1)
ORCID: https://orcid.org/0000-0002-1808-835X; zagorodna_n@tntu.edu.ua. Scopus Author ID: 57189380553

Ruslan O. Kozak1)
ORCID: https://orcid.org/0000-0003-1323-0801; ruslank@tntu.edu.ua. Scopus Author ID: 57193443499

Mikolaj P. Karpinski2)
ORCID: https://orcid.org/0000-0002-8846-332X; mikolaj.karpinski@up.krakow.pl. Scopus Author ID: 57202467671

Liubomyr O. Flud3)
ORCID: https://orcid.org/0000-0002-8347-4265; flud@nltu.edu.ua. Scopus Author ID: 57202467671

1) Ternopil Ivan Puluj National Technical University, 56, Ruska Str. Ternopil, 46001, Ukraine
2) University of the National Education Commission, 2, Podchorążych Str. Krakow, 30-084, Poland

3) Ukrainian National Forestry University, 103, Gen. Chuprynky Str. Lviv, 79057, Ukraine

ABSTRACT

According to the latest “OWASP Top Ten” list, “Insecure Design” vulnerability is one of the key factors affecting the level of

data protection and functional reliability. Heightening attention to this issue is pertinent as this vulnerability is appeared to be the first

time in OWASP list and just briefly described there. This study aims to identify and analyze the architectural vulnerabilities of web

applications arising from “Insecure Design”. The goal is not only to identify specific vulnerabilities in the web applications design

and implementation process but also to develop a detailed list of recommendations, that will help not only avoid similar problems in

the future but to create a good background for safe web applications development from the start point. In order to construct a

systematic approach to security at all stages of development, recommendations from the Software Development Life Cycle standard

are considered here. Special attention is given to integrating security principles at all stages of the development lifecycle. The

analysis is based on examining existing architectural solutions, studying vulnerabilities, and developing methods for their mitigation.

The developed set of recommendations to enhance the security of web applications includes measures for architectural design,

verification and validation processes, and early detection of potential vulnerabilities. Significant attention is paid to developing

secure code, implementing security policies, and organizing training for developers. The research emphasizes the importance of

integrating security into the web application development process from the beginning. The scientific novelty lies in the

systematization and development of approaches to detect and mitigate architectural vulnerabilities caused by “Insecure Design”. The

practical significance of the paper is expressed in enhancing the security level of web applications, reducing risks for businesses and

users, and fostering a culture of security among developers.

Keywords: Insecure design; web applications; secure development lifecycle; security practices; application vulnerability;

multi-layered structure

For citation: Revniuk O., Zagorodna N., Kozak R., Karpinski M., Flud L. “The improvement of web-application SDL process to prevent

Insecure Design vulnerabilities”. Applied Aspects of Information Technology. 2024; Vol. 7 No. 2: 162–174.

DOI: https://doi.org/10.15276/aait.07.2024.12

INTRODUCTION

In the era of globalization and digital

transformation, web applications have evolved into

an indispensable component of various aspects of

people's daily lives. From personal blogs to complex

corporate systems, their application penetrates every

segment of our activities, causing a significant

increase in their popularity. Such growth not only

confirms their importance in the modern digital

© Revniuk O., Zagorodna N., Kozak R.,

 Karpinski M., Flud L. 2024

environment but also emphasizes the significant

excess of the number of web applications over

traditional applications. Consequently, the increase

in their usage makes web applications attractive

targets for cyber attacks and fraudulent actions,

which in turn leads to an increase in incidents related

to the leakage of personal data of users and

vulnerabilities of security systems.

In this context, companies engaged in the

development of web applications must pay special

attention to aspects of security and data

confidentiality. The application of advanced

practices and innovative technologies in the field of

This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/deed.uk)

https://doi.org/
https://orcid.org/0009-0005-0511-5354
mailto:revo0708@gmail.com
https://orcid.org/0000-0002-1808-835X
mailto:mikolaj.karpinski@up.krakow.pl

Revniuk O. A., Zagorodna N. V., Kozak R. O., Karpinski M. P., Flud L. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 162–174

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer systems and cybersecurity 163

cyber security becomes a necessity to ensure

protection against a wide range of threats. This

includes the implementation of comprehensive

authentication mechanisms, data encryption, regular

software updates, as well as the development and

implementation of incident response strategies.

Regular cases of security breaches demonstrate the

critical need for constant analysis, evaluation, and

improvement of existing protective measures.

1. ANALYSIS OF LITERARY DATA AND

PROBLEM STATEMENT

Successful attacks on web applications, which

are increasing annually, result in financial losses for

companies and damage to their reputation. Most

often, users become the victims of cyberattacks

aimed at seizing computational resources, accounts,

or user data. Users typically trust web applications

from well-known brands or institutions more,

believing that large corporations devote adequate

attention to the security of their applications.

However, large companies are also victims of

cyberattacks [1]. News reports about attacks on such

corporations often dominate the headlines [2].

Fig. 1 shows the 10 biggest data breaches of

recent years. However, web applications on a

smaller scale frequently become victims too.

According to SiteLock, which analyzed 7 million

websites, modern websites undergo an average of 94

cyberattacks per day and receive about 2,608 bot

visits per week [3].

Attacks that are directed at a specific

application and continue until a certain result is

achieved are called “Targeted attacks”. Typically,

they choose one or a few victims and use the

maximum amount of resources to find

vulnerabilities and successfully hack. Often, the

victims are websites that come into the attacker's

view accidentally, as a result of using automated

tools for conducting attacks. Attackers exploit

vulnerabilities at the hardware, software, and

communication levels.

The classification of modern vulnerabilities is

undertaken by the OWASP community (Open Web

Application Security Project). This is an

international non-profit organization that specializes

in analyzing and improving the security of software,

whose members identify the most dangerous

vulnerabilities based on statistics and research,

allowing them to focus on the most critical aspects

of software security. The research of the OWASP

community is an important source of information for

developers and software security professionals, as it

enables the identification and mitigation of potential

threats to the security of web applications at early

stages of their development.

In 2003, OWASP first proposed a list of the

most dangerous web application vulnerabilities,

called the “OWASP Top Ten”. All products of this

community are free and open source. Thousands of

companies and professionals worldwide collaborate

with it, using it as a standard reference document for

testers and web application developers. The research

of the OWASP community is an important source of

information for developers and software security

professionals, as it enables the identification and

mitigation of potential threats to the security of web

applications at early stages of their development.

Fig. 1. Top 10 largest data breaches in history
Source: compiled by the [2]

Revniuk O. A., Zagorodna N. V., Kozak R. O., Karpinski M. P., Flud L. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 162–174

164

Computer systems and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

The list of vulnerabilities is reviewed annually,

but in practice, updates occur every three to four

years. If updates happen more frequently, it indicates

that attacks on web applications are advancing to a

new level, becoming more prevalent, and

necessitating a corresponding response from

communities worldwide. The vulnerabilities in this

list are ranked by frequency of occurrence, so their

positions in the list change, also due to the

emergence of new threats.

The latest update to the list of priority web

application vulnerabilities occurred in 2021. From

Fig. 2, it is evident that some vulnerability were

transformed and appeared under new names, but

new vulnerabilities also emerged [4, 5], [6].

Fig. 2. Updated list of threats in 2021
Source: compiled by the authors

In recent years, there has been an increase in

incidents related to the “Insecure Design”

vulnerability. This vulnerability occupies the fourth

place in the list, indicating its significant impact on

the security of web applications. A brief overview of

data breaches provided below allows understanding

the threat landscape and methods used by attackers

to carry out attacks.
“Data of More Than 200 Million Twitter Users

Is Leaked” – the data leak occurred in 2021 through

the exploitation of a vulnerability in Twitter's API,

which allowed users to enter email addresses and

phone numbers to check if they were linked to a

Twitter identifier. In this data leak, attackers

combined publicly available data with private email

addresses and phone numbers to create user profiles

on Twitter using another social network API, which

enabled obtaining identifiers from the company's

publicly available data. They then matched the data

to determine if a phone number or email address

corresponded to the identifier. Despite the company

fixing this vulnerability in January 2022, several

threat actors have recently started distributing the

data collections they obtained over a year ago for

free. Thus, due to the large number of different

APIs, it was possible to obtain unique user

identifiers [7].

“Linux Malware Targets 30+ WordPress”

“Plugins” is a Linux backdoor malware. It was

discovered, capable of exploiting around 30

WordPress plugins to inject malicious JavaScript

code and redirect users to harmful, malicious, and

phishing websites created by attackers. This

indicates that the imprudent use of outdated plugins

with third-party or redundant functionality led to a

serious vulnerability in the entire project [8].

“United States Office of Personnel

Management – The most Flagrant” – On May 7,

2014, a Chinese group named X2 utilized stolen

OPM credentials from Key Point to install malware

for backdoor access left by the development team.

As a result, there was a data breach containing

information of a governmental nature.

Despite the large number of recorded incidents,

it is important to note that the “Insecure Design”

vulnerability is poorly formalized, and existing

recommendations for its mitigation often are of a

general nature and do not provide specific actions at

different stages of web application development.

GOAL AND RESEARCH OBJECTIVES

The purpose of the research. The aim of the

study is to enhance the security of web application

by analysis and elimination of architectural

vulnerabilities arising from the threat category

known as “Insecure Design”. The main idea is to

identify specific weaknesses in the web application

design and implementation process and suggest a list

of mitigations, which could be embedded during

Revniuk O. A., Zagorodna N. V., Kozak R. O., Karpinski M. P., Flud L. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 162–174

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer systems and cybersecurity 165

different stages of web application development

lifecycle in order to secure the final software

product.

The research tasks include: a detailed analysis

of the vulnerabilities of “Insecure Design” will be

carried out to understand the essence of the problem

and its impact on the security of web applications.

Based on conducted analysis, the existing

approaches to overcoming this vulnerability, will be

investigated and expanded in order to identify the

most effective protection strategies. Using the

research findings, expanded recommendations will

be provided within the framework of the Secure

Development Lifecycle (SDL) concept, which will

facilitate the adaptation of security measures to

various stages of web application development. As a

result, specific approach on protecting against the

“Insecure Design” vulnerability at the software

development stage (SDL) will be formulated.

The object of research is the secure

development lifecycle of web applications.

The subject of research are measures in the

form of additions to the basic SDL diagram, to

facilitate their practical implementation and ensure

their systematic integration into web application

development.

2. MAIN RESEARCH RESULTS

 2.1. Web Application Structure

Planning the structure of web applications

determines how their operation will be organized,

which components will be used, how they will

interact with each other and with other systems. To

protect against threats, it is necessary to

meticulously plan the structure of web applications,

which will allow the identification and elimination

of potential vulnerabilities associated with “Insecure

Design” and apply best security practices at the

architectural level.

Modern web applications are complex systems

that can include dynamic content, interactive

elements, databases, as well as integration with

various services and applications [9, 10], [11, 12].

Web applications have a multi-layered structure,

allowing them to be more flexible and functional.

They can consist of various sections, subpages,

modules, APIs, and other technologies that extend

their capabilities and provide users with a wider

range of services. Such complexity in web

applications is reflected in their architecture and

navigation, making them more adaptive and

interactive for users. The generalized structure of a

web application is illustrated in Fig. 3.

Fig. 3. Structure of a modern web application
Source: compiled by the authors

Communication between the client and web

applications typically begins through a web browser,

which interacts with the frontend part of the system.

The frontend, in turn, interacts with backend

applications that utilize various technologies for

processing, storing, and providing the necessary

information to the client [13, 14], [15].

Web applications comprise a set of components

that work simultaneously and harmoniously. The

client-side represents the output of developers' work,

with which users directly interact in the browser.

Thus, interaction with server components occurs

through the HTTP protocol. Web applications use

various protocols for interaction with different

components. For example, the interaction of the

“BackEnd” service with the “PostgreSQL” database

may utilize a “native” protocol based on messages,

supported at the TCP/IP level [16].

The server-side of modern web applications

performs tasks responsible for managing the

application's database and ensuring a continuous

flow of information between the client interface and

the server. The reliability and efficiency of the

backend are crucial for providing a reliable user

experience. Moreover, the architecture of the server-

side often includes aspects such as scalability,

security, and performance optimization to meet the

demands of web applications.

However, it can be definitively stated that the

complexity and functionality of web applications are

increasing, and therefore, the number of potential

vulnerabilities that could be exploited by malicious

actors is also increasing.

Due to next-generation attacks and concealment

methods, traditional defense systems, such as

firewalls, intrusion detection systems, antivirus

software, access control lists, etc., are not always

effective. Often, the very fact of being unaware of a

web application's compromise marks the beginning

of problems related to the leakage of confidential

information onto various “dark” markets, and later

into the publicly accessible space of the Internet.

Revniuk O. A., Zagorodna N. V., Kozak R. O., Karpinski M. P., Flud L. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 162–174

166

Computer systems and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Therefore, when developing web applications using

modern technologies and programming languages, it

is important to remember that cybercriminals

possess deep knowledge of operating systems, can

quickly write malicious computer programs, and in a

short time identify vulnerabilities in the latest web

applications.

Attacks by malicious actors are typically

directed at both components of web services: the

client and server sides. However, attacks on the

server side are particularly dangerous because the

client may not even suspect the web application's

compromise when entering a login and password,

believing themselves to be secure. It is crucial, at the

stage of creating a system or web application, to care

for the security of each component of web

applications.

2.2. Web Application Vulnerability Analysis

The security of the server-side is always a

priority, given that the majority of vulnerabilities

identified in the OWASP list are inherently related

to the server side. This is a critical area of concern

because malicious access to any internal component

of a web service not only compromises that specific

element but can also serve as a gateway for further

attacks on the entire system. Such vulnerabilities

underscore the paramount importance of rigorously

focusing on the server side's security in web

applications. The types of vulnerabilities affecting

the server side can be broadly categorized into three

main groups: logical vulnerabilities, which stem

from flawed business logic or inadequate security

measures; exploitative vulnerabilities, which can be

abused through specific attack vectors like SQL

injection or Cross-Site Scripting (XSS); and

implementation error vulnerabilities, which arise

from mistakes made during the development and

deployment phases, such as misconfigurations or

improper session management..

Logical vulnerabilities frequently emerge as a

consequence of inadequate segregation of data

access rights, the incorporation of excessive or

potentially hazardous functionalities within the web

application, and deviations from the intended logic

of the project [17, 18], [19, 20]. Such vulnerabilities

are particularly insidious because they exploit the

inherent logic of the application rather than targeting

lower-level coding mistakes or exploiting hardware

weaknesses. Excessive or dangerous functionality

refers to features that were not planned in the project

requirements. For example, a developer may add

console functionality to facilitate testing during

development, and this functionality may remain in

the product's “production” version upon deployment.

Since this functionality could be known to malicious

actors, they might use it to bypass the web

application's protection rules. Logical vulnerabilities

are often related to the application's business logic

and are difficult to detect by someone not directly

working with the service. Such issues should be

identified by professionals during the product testing

phase.

The vulnerability Insecure Direct Object

Reference (IDOR) is quite common due to the

simplicity of its implementation [21]. According to

research [22, 23], [24], it is particularly prevalent in

web applications with APIs – developers often

encounter this vulnerability when protecting client

software, as illustrated in Fig. 4.

Fig. 4. Percentage of vulnerability detection

relative to sample size in web applications
Source: compiled by the [22, 23[, [24]

This is a logical vulnerability in the project,
through which hidden information can be obtained
from the database using a permitted HTTP request.
The essence of it is that identifiers that can be
guessed are used in the request string. For example,
if through the request “GET /product/25” you can
get information about a product with identifier “25”,
then it is quite logical that you can substitute
identifier “30”, and the attacker will receive the
corresponding product without interacting with the
site.

Web application vulnerabilities arise as a result
of several factors: the complexity of project
implementation, poorly designed architecture, which
requires adding more complex parts that were not
even originally intended for implementation, and the
human factor.

Regarding exploitation vulnerabilities – this is
probably the most common cause of vulnerabilities

Revniuk O. A., Zagorodna N. V., Kozak R. O., Karpinski M. P., Flud L. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 162–174

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer systems and cybersecurity 167

in web applications. It is a result that arises from
implementation error vulnerabilities. They are the
most systematized, and can be detected and
eliminated at the stage of project development.
These errors occur when attackers use vulnerabilities
in software to perform malicious actions, such as
leaking confidential information, making changes to
the system, or harming users. Exploitation errors can
be used to implement attacks such as cross-site
scripting, SQL injection, use of dangerous functions,
etc. Detecting and eliminating these errors at the
development stage helps prevent potential attacks
and ensure a high level of security of web
applications. Additionally, exploitation errors may
include taking advantage of weaknesses in web
applications to carry out attacks such as injecting
malicious code, stealing session files, exploiting
insufficiently protected APIs, and other hacking
techniques. Detecting and eliminating these errors
requires thorough security auditing, following best
practices in programming, and implementing
security measures at all levels of web application
development.

The essence of many client-side vulnerabilities
is in attacks on web users' browsers. Such attacks are
aimed at bypassing the “Same origin policy” (SOP).
This is a protection mechanism that exists in any
client browser. For example, when using CURL –
there is no such protection. The purpose of such
attacks is to use the “origin” from one resource in
another. In fact, there is one mechanism that
legitimately allows you to do this – cross-origin
resource sharing (CORS). Therefore, to interact
between two different client parts, you need to
properly configure CORS security. Very often,
developers neglect this security, and attackers often
exploit vulnerabilities by executing JavaScript code.

Another common client-side vulnerability is
related to using “Websockets”. Usually, to support
such a connection, a request with “Connection:
Upgrade” and other attributes is sent, primarily
“origin”.

An example of a dangerous request can be

depicted in Fig. 5.

Fig. 5. WebSocket connection request example

illustrating client-side vulnerability
Source: compiled by the authors

The problem with this vulnerability is that the

origin always needs to be validated. It must be valid,

and the connection to the websocket should only be

allowed if the origin is allowed by the server. This

issue is relevant because even on Github there are

many libraries for working with websockets.

However, most of them do not have built-in

protection and rely on the developer's responsibility.

Accordingly, if the latter does not write any

protection functionality – the application can be

compromised through this vulnerability. Client-side

vulnerabilities also include Cross-Site Request

Forgery (CSRF), Cross-Site Scripting (XSS), and

others that annually occupy top positions in the

OWASP Top Ten documentation. Let's take a closer

look at the Insecure Design vulnerability.

 2.3. Vulnerability analysis of Insecure Design

Insecure Design is a vulnerability that is

inherent in the planning and architecture of a project,

meaning it is considered within the framework of

secure web application design. Unlike vulnerabilities

like injections that can be avoided with a few lines

of code, insecure design vulnerability can have

unpredictable consequences for the entire web

application, not just an individual component. The

main cause of the vulnerability is improper threat

modeling, which is done at the software design stage

and propagates through to project completion. The

vulnerability can arise during web application

development when a developer disables important

security features for testing and forgets to re-enable

them. Another cause can be excessive information

disclosure from HTTP request validation for the

client or overly simple identity verification using

easily guessable security questions.

One of the tasks facing the development team is

project planning, which must take into account

information security requirements on the one hand,

as well as ensuring that all business processes and

functionality do not conflict with each other,

preventing “logical” errors from occurring. In this

regard, Insecure Design vulnerability can arise due

to an insufficient project budget, poorly thought-out

business logic, and incorrect task setting for

developers. Thus, a web application can be secure at

a certain point, but after additional changes to

software features, new opportunities open up for

attacks on the web application.

A review of publications [25] shows that the

Insecure Design vulnerability is still poorly

formalized, and recommendations for protection

may seem somewhat abstract.

Revniuk O. A., Zagorodna N. V., Kozak R. O., Karpinski M. P., Flud L. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 162–174

168

Computer systems and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

The OWASP organization not only studies and

defines lists of the most popular vulnerability

categories, but also provides some recommendations

for their elimination [26], in particular:

 use a secure development lifecycle and

involve web application security professionals to

evaluate and design security and privacy controls;

 create and utilize a library of secure design

patterns;

 perform threat modeling against important

business logic elements;

 implement checks at every level of the web

application;

 full module and integration test coverage of

the entire application;

 segmentation at the system and network layers

according to exposure and protection needs;

 separation of duties across all tiers during

design;

 resource usage limits per user or service.

Many researchers refer to this list, which is

undoubtedly useful and developed based on many

years of research and statistics. Most authors

emphasize secure development (SDL) and involving

web security experts. The question arises as to what

measures companies and software developers can

take if they do not have the resources to involve

cybersecurity experts in their projects. In addition,

for simple projects in terms of functionality, there is

often no possibility of conducting additional cyber

security expertise due to budget constraints. One

way or another, the entire responsibility for project

security lies with the development team, whose level

of competence in cybersecurity may be insufficient

to properly protect the web applications they create

from “Insecure Design” vulnerabilities. This

problem requires increased attention from

professionals and the expansion and improvement of

recommendations for web application developers.

In order to expand recommendations for

protection against Insecure Design vulnerabilities at

different software development stages, the secure

development lifecycle (SDL) is further examined in

this work.

2.4. Secure software development cycle

Secure Development Lifecycle (SDL) is a

software development concept that involves clearly

defined application requirements, secure coding,

testing stages, certification, deployment, and

sustainment [27, 28], [29, 30]. It is a process that

enables maintaining the required level of system

security during development and throughout its

entire lifetime. The process flow is shown in Fig. 6.

Secure development lifecycle helps follow a

systematic approach when creating secure web

applications. The concept defines a set of actions

and processes that should be applied throughout the

entire development lifecycle – from formulating

product requirements to taking it out of service.

Secure development lifecycle involves

engaging security experts at all stages of system

design and implementation. At the coding and

testing stages, software compliance with security

standards is verified and potential vulnerabilities are

identified.

Fig. 6. Secure development lifecycle
Source: compiled by the authors

Revniuk O. A., Zagorodna N. V., Kozak R. O., Karpinski M. P., Flud L. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 162–174

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer systems and cybersecurity 169

An important component of SDL is the

continuous monitoring of the deployed system to

identify new threats, update protections, and fix

vulnerabilities throughout the product's entire

service lifetime. That is, Secure Development

Lifecycle represents an integrated approach to

security that covers the entire software lifecycle.

This approach works well even when clients come

with new ideas and ambitious additions or

extensions of functionality, creating an environment

where any client request is guaranteed to be

analyzed from an information security perspective.

The choice of software architecture type does

not have a decisive influence on the emergence of

“Insecure Design” vulnerability, since before any

code is written, developers must have a clear

understanding of the architecture of the future web

application, and therefore a plan to avoid or mitigate

vulnerabilities.

2.5. Extending protection recommendations

from Insecure Design

The Secure development lifecycle (SDL) is a

process that enables the successful and secure

development and maintenance of web applications.

Since the emergence of SDL, it has been

supplemented and improved with new

recommendations, standardization, and successful

practices based on the work of teams around the

world. Since the “Insecure Design” vulnerability

occupies the fourth position in the list of priority

vulnerabilities, this necessitated a thorough

examination of existing approaches and

supplementing them with new ones to protect web

applications at each stage of the SDL in this work.

The first important stages of the secure

development lifecycle are defining business and

functional requirements, and on their basis –

planning the secure architecture of the project. When

planning the architecture, it is important to consider

future risks, the possibility of expanding the project,

and the correctness of the approach to information

exchange between components, especially with

microservice architecture. Maintaining a balance

between the functionality the client needs and what

the development team can offer is an important

caveat, since overloading with functionality can

expose vulnerabilities to “Insecure Design”.

The development stage is a critical stage that

comes after project planning. Often, developers who

will be writing the code mistakenly think that

everything has been planned out up to this point, all

schemas and functional requirements are accounted

for - so information security on the project is fine.

This can lead to a situation where web application

protections are not implemented or remain

inadequate. In view of this, recommendations were

developed, presented below in this section,

regarding risk and threat analysis, and strengthening

protection during the development stage.

The availability of disk space for regular users

is essential. If we exclude cloud storage and consider

simpler implementations, any website typically

contains images, content files, and downloads. It's

important to restrict access to the entire file system

and allocate separate public logical spaces for user

interaction with the file system. This way,

vulnerabilities such as uncontrolled execution of

uploaded files can be mitigated, and access modes

(as mentioned in OWASP) can be limited.

Protection of requests for interacting with

specific entities is crucial. First and foremost, never

use clear and predictable identifiers of entity records

in requests, as substituting them can grant access to

other information in the project. Despite all

warnings and examples of attacks, such a practice is

not uncommon. In such cases, it's worth employing

additional protection using various types of

middleware. In simple terms, this is protection

during a request to the server, which takes place

between the start of the request and the execution of

actions by a specific class. It's essential to verify the

legitimacy of this request, whether the client can

interact with the record related to the request, and

whether such a record exists at all.

Validation of permissions to perform a certain

request is crucial in software development. Often,

developers make logical errors, trying to clearly

indicate to the user what they are doing wrong at the

moment, making it easier for them to correct their

input and achieve the desired result. An example

could be a detailed description of what was entered

incorrectly during user authentication. Additionally,

there is often a need to distinguish between

permissions, and instead of issuing a 404 error,

developers indicate a 403 error. However, for an

attacker, this means that they have found an object

to attack. Another example is WordPress CMS,

where the use of its CSS classes with the "wp-"

prefix and the standardized authentication endpoint

“wp-login” make it easy for attackers to identify and

exploit vulnerabilities.

Security when using APIs and libraries is

crucial in software development. Developers often

rely on pre-existing functionality to streamline their

work, but they may overlook whether these

components adhere to secure development lifecycle

(SDL) practices, whether their code is updated, and

Revniuk O. A., Zagorodna N. V., Kozak R. O., Karpinski M. P., Flud L. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 162–174

170

Computer systems and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

whether there is developer support. Carelessness in

this matter can lead, among other things, to “supply

chain attacks”.

Standardization and programming patterns play

a crucial role in software development. Utilizing

programming patterns and principles such as SOLID

ensures the writing of high-quality code. With

correct programming approaches, issues like random

code changes, leaving backdoors, console errors, and

other unwanted consequences can be avoided.

However, experimenting with new approaches,

deviating from commonly accepted practices, and

overcomplicating simple tasks can lead to problems

associated with “Insecure Design”.

The testing phase of a product is crucial in

ensuring its quality. The quality of code coverage by

tests heavily depends on the aforementioned

programming patterns. The more intuitively simple

the code is written, the easier it is to test it in the

future. Testing the business logic, established at the

beginning of the project, is essential. Often,

developers “assure” that “everything works, it

cannot be otherwise”, and testing is done based on

trust and the result of test coverage.

During the deployment phase, it is crucial to

understand the entire journey of the web application,

its essence, and functional requirements.

Repositories or configuration files of the project

after its completion may contain access, test, or

sensitive data. Checking configuration files and

repositories for confidential information will help

avoid potential compromise of the web application

or user data.

Supporting a project involves monitoring and

continuously updating the software, as well as

receiving feedback from users and analyzing the

behavior of the web application under various

operating conditions. Fig. 7 depicts an updated SDL

process diagram, enhanced with recommendations

and analysis provided earlier in this section.

Therefore, this addendum serves as an

extension of recommendations for protection against

vulnerabilities like “Insecure Design” within the

context of the Secure Development Lifecycle (SDL)

concept. It is noted that this concept is actively

evolving worldwide with teams continuously adding

new standards and best practices.

Fig. 7. Addendum to secure development lifecycle
Source: compiled by the authors

Revniuk O. A., Zagorodna N. V., Kozak R. O., Karpinski M. P., Flud L. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 162–174

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer systems and cybersecurity 171

Special attention should be paid to the software

development phase within the SDL framework.

Therefore, a series of recommendations have been

provided for developers to avoid common mistakes

that could lead to security issues. This includes

limiting access to the file system, protecting against

request identifier substitution, securely working with

APIs and libraries, adhering to coding standards, and

more. Taking these recommendations into account

will significantly enhance the security of developed

web applications.

DISCUSSION OF RESULTS

The results of our research provide a deeper

insight into the “Insecure Design” vulnerability issue

within the context of web application development.

By analyzing architectural vulnerabilities, we

particularly focused on integrating security

principles at the early stages of development. This

approach helps to mitigate risks and ensures a strong

foundation for creating safer web applications.

Further discussion of the results also highlights

the importance of a comprehensive understanding of

both technical and business aspects of the project.

Security should not be considered in isolation from

the main functionality and goals of the web

application, as it is closely linked with all aspects of

development.

An important aspect that requires further

analysis is the impact of new technologies on the

security of web applications. Technologies such as

containerization, serverless architecture, and

microservices open up new opportunities for

optimization and scaling of web applications but

also pose new challenges for ensuring security. In

analyzing these technologies, it is important to

understand not only their potential advantages but

also the possible risks they may introduce to the

architecture of web applications.

Considering these aspects in the context of our

results shows that security measures need to be

flexible and adapted to the rapidly changing digital

landscape.

CONCLUSION

The article conducted an analysis of the

"Insecure Design" vulnerability in web applications.

It was established that protection against “Insecure

Design” threats must be comprehensive and cover

all stages of the Software Development Lifecycle

(SDL).

It was found that the effectiveness of the

proposed security measures can significantly depend

on the specifics of the project and its architecture.

This requires an adaptive approach to implementing

security, where each web application requires an

individual assessment of potential vulnerabilities and

methods for their mitigation.

The proposed recommendations and diagrams

can assist developers and security administrators in

building protection against the "Insecure Design"

vulnerability through modern methods and

technologies, which open new possibilities for

integrating security practices at various stages of the

web application lifecycle. This not only enhances

the level of protection for web applications but also

provides flexibility in further management and

support.

In conclusion, the importance of continuously

updating and improving security practices cannot be

overstated, as it is key to maintaining the reliability

and security of web applications in the modern

digital world.

REFERENCES

1. Lydon, M. “11 Companies who have recently faced a cyberattack”. – Available from:
https://www.growbo.com/recent-cyber-attacks-on-companies. – [Accessed: Dec, 2023].

2. Kerner, S. M. “34 cybersecurity statistics to lose sleep over in 2023”. TechTarget Network. –
Available from: https://www.techtarget.com/whatis/34-Cybersecurity-Statistics-to-Lose-Sleep-Over-in-2020.
– [Accessed: Dec, 2023].

3. “2022 Sitelock annual website securite report”. SiteLock A Sectige Company. – Available from:
https://s3.us-east-1.amazonaws.com/sectigo-sites-web/global/uploads/2022-SiteLock-Website-Security-
Report-FINAL.pdf. – [Accessed: Dec, 2023].

4. Aydos, M., Aldan, C., Coşkun, E. & Soydan, A. “Security testing of web applications”. A Systematic
Mapping of the Literature, Journal of King Saud University – Computer and Information Sciences, 2022; 34
(9): 6775–6792, https://www.scopus.com/authid/detail.uri?authorId=56928400400.
DOI: https://doi.org/10.1016/ j.jksuci.2021.09.018.

5. Upadhyay, D., Ware, N. & Mahesh, B. “Evolving trends in web application vulnerabilities: A
comparative study of OWASP Top 10 2017 and OWASP Top 10 2021”. International Journal of

Revniuk O. A., Zagorodna N. V., Kozak R. O., Karpinski M. P., Flud L. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 162–174

172

Computer systems and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Engineering Technology and Management Sciences. 2023; 7 (6): 262–269.
DOI: https://www.doi.org/10.46647/ijetms.2023.v07i06.038.

6. Fredj, O., Cheikhrouhou, O., Krichen, M., Hamam, H. & Derhab, A. “An OWASP Top TenDriven
survey on web application protection methods”. Risks and Security of Internet andSystems. 2021. p. 235–
252. DOI: https://www.doi.org/10.1007/978-3-030-68887-5_14.

7. Trojanović, D. “Data of more than 200 million twitter users is leaked”. – Available from:
https://purplesec.us/security-insights/twitter-data-leak-200-million-users. – [Accessed: Dec, 2023].

8. Georgieva, E. “Linux malware targets 30+ WordPress Plugins”. – Available from:
https://purplesec.us/security-insights/wordpress-plugin-vulnerabilities. – [Accessed: Dec, 2023].

9. Abdulghaffar, K., Elmrabit, N., Yousefi, M. Enhancing “Web application security through
automated penetration testing with multiple vulnerability scanners”. Computers. 2023; 12 (11): 235,
https://www.scopus.com/authid/detail.uri?authorId=16235087000.
DOI: https://doi.org/10.3390/computers12110235.

10. Mangal, L., Pushpendre. & Singh, P. “File Transferring web application using node JS”.
International Journal for Modern Trends in Science and Technology. 2022; 8 (1): 22–25.
DOI: https://www.doi.org/10.46501/IJMTST0801004.

11. Poulter, A., Ossont, S. & Cox, S. “Using the MEAN stack to implement a RESTful service for an
Internet of Things Application”. IEEE World Forum on Internet of Things. 2015. p. 280-285.
DOI: https://www.doi.org/10.1109/WF-IoT.2015.7389066.

12. Tilkov, S. & Vinoski, S. “Node.js: Using JavaScript to BuildHigh-Performance Network Programs”.
IEEE Internet Com-puting. 2010; 14 (6), 80–83. DOI: https://www.doi.org/10.1109/MIC.2010.145.

13. Wakil, K. “Extracting the features of modern web applications based on web engineering methods”.
International Journal of Advanced Computer Science and Applications. 2019; 10 (2).
DOI: https://www.doi.org/10.14569/IJACSA.2019.0100209.

14. Wakil, K. & Jawawi, D. “Extensibility interaction flow modeling language metamodels to develop
new web application concerns”. Kurdistan Journal of Applied Research. 2017; 2 (3): 172–177.
DOI: http://dx.doi.org/10.24017/science.2017.3.23.

15. Wakil, K. & Jawawi, D. “Model driven web engineering: A systematic mapping protocol”
Conference: ISCI. – Available from: https://www.researchgate.net/publication/319839831_
Model_Driven_Web_Engineering_A_Systematic_Mapping_Protocol. – [Accessed: Feb, 2023].

16. “The PostgreSQL global development group. Chapter 55. Frontend/Backend Protocol. The
PostgreSQL Global Development Group”. – Available from:
https://www.postgresql.org/docs/current/protocol.html. – [Accessed: Dec, 2023].

17. Faisal, N., Jianming, Y. & Xiaohui, T. “Classification of logical vulnerability based on group
attacking method”. Procedia Computer Science. 2020; 170: 923–928.
DOI: https://doi.org/10.1016/j.procs.2020.03.109.

18. Sharma, C. & Jain, S. “Analysis and classification of SQL injection vulnerabilities and attacks on
web applications”. International Conference on Advances in Engineering and Technology Research
(ICAETR). 2014. p. 1–6. DOI: https://doi.org/10.1109/ICAETR.2014.7012815.

19. Li, X., Chang, X., Board, J. A. & Trivedi, K. S. “A novel approach for software vulnerability
classification.”. Reliability and Maintainability Symposium (RAMS). 2014. p. 1–7.
DOI: https://doi.org/10.1109/RAM.2017.7889792.

20. Fournaris, A., PoceroFraile, L. & Koufopavlou, O. “Exploiting hardware vulnerabilities to attack
embedded system devices: A survey of potent microarchitectural attacks.” Electronics. 2017; 6 (3): 52. DOI:
https://doi.org/10.3390/electronics6030052.

21. Yulianto, S., Abdullah, R. R. & Soewito, B. “Comprehensive analysis and remediation of insecure
direct object references (IDOR) vulnerabilities in android APIs”. IEEE International Conference on
Cryptography, Informatics, and Cybersecurity (ICoCICs). 2023. p. 23–28.
DOI: https://doi.org/10.1109/ICoCICs58778.2023.10276919.

22. Bhuiyan, T., Begum, A., Rahman, S. & Hadid, I. “API vulnerabilities: Current status and
dependencies”. International Journal of Engineering & Technology. 2018; 7 (2): 9–13.
DOI: https://doi.org/10.14419/ijet.v7i2.3.9957.

23. Myers, B. & Stylos, J. “Improving API usability”. Communications of the ACM, 2016; 59 (6):
62–69. DOI: https://doi.org/10.1145/2896587.

Revniuk O. A., Zagorodna N. V., Kozak R. O., Karpinski M. P., Flud L. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 162–174

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer systems and cybersecurity 173

24. Scheller, T. & Kuehn, E. “Automated measurement of API usability: The API Concepts
Framework”. Information and Software Technology. 2015; 61: 145–162.
DOI: https://doi.org/10.1016/j.infsof.2015.01.009.

25. Yudin, O., Kharchenko, V. & Pevnev, V. “Scanning of web-applications: Algorithms and software
for search of vulnerabilities “Code Injection” and “Insecure Design””. IEEE 12th International Conference
on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS).
2023. p. 1005-1010. DOI: https://doi.org/10.1109/IDAACS58523.2023.10348918.

26. “A04:2021 – Insecure Design. OWASP”. – Available from: https://owasp.org/Top10/A04_2021-
Insecure_Design. – [Accessed: Dec, 2023].

27. Uçak, U. & Tuna, G. “Design, Development, and Testing of Web Applications: Security Aspects”.
Protecting User Privacy in Web Search Utilization, edited by Rafi Ullah Khan, IGI Global, 2023. p. 117–
138. DOI: https://doi.org/10.4018/978-1-6684-6914-9.ch006.

28. Gurung, G., Shah, R. & Jaiswal, D. “Software development life cycle models-a comparative study”.
International Journal of Scientific Research in Computer Science Engineering and Information Technology.
2020; 6 (4): 30–37. DOI: https://doi.org/10.32628/CSEIT206410.

29. Acharya, B. & Sahu, P. “Software development lifecycle models: a review paper”. International
Journal of Advanced Research in Engineering and Technology (IJARET). 2020; 11 (12).
DOI: https://doi.org/10.34218/IJARET.11.12.2020.019.

30. Geogy, M. & Dharani, A. “Prominence of each phase in Software development life cycle
contributes to the overall quality of a product”. International Conference on Soft-Computing and Networks
Security (ICSNS). 2015. DOI: https://doi.org/10.1109/ICSNS.2015.7292390.

Conflicts of Interest: The authors declare that there is no conflict of interest

Received 16.02.2024

Received after revision 29.04.2024

Accepted 14.05.2024

DOI: https://doi.org/10.15276/aait.07.2024.12

УДК 004.056

Удосконалення процесу SDL веб-додатків для запобігання

вразливостям Insecure Design

Ревнюк Олександр Андрійович 1)
ORCID: https://orcid.org/0009-0005-0511-5354; revo0708@gmail.com

Загородна Наталія Володимирівна 1)
ORCID: https://orcid.org/0000-0002-1808-835X; zagorodna_n@tntu.edu.ua. Scopus Author ID: 57189380553:

Козак Руслан Орестович 1)
ORCID: https://orcid.org/0000-0003-1323-0801; ruslank@tntu.edu.ua. Scopus Author ID: 57193443499

Карпінський Микола Петрович 2)
ORCID: https://orcid.org/0000-0002-8846-332X; mikolaj.karpinski@up.krakow.pl. Scopus Author ID: 57202467671

Флуд Любомир Олегович 3)
ORCID: https://orcid.org/0000-0002-8347-4265; flud@nltu.edu.ua. Scopus Author ID: 57202467671

1) Тернопільський національний технічний університет імені Івана Пулюя, вул. Руська, 56. Тернопіль, 46001, Україна
2) Університет Національної Освітньої Комісії, вул. Подхоражих, 2. Краків, 30-084, Польща

3) Український національний лісотехнічний університет, вул. Ген. Чупринки, 103. Львів, 79057, Україна

АНОТАЦІЯ

Згідно з останнім списком “OWASP Top Ten”, вразливість “Insecure Design” є одним з ключових факторів, що

впливають на рівень захисту даних та функціональної надійності. Посилення уваги до цієї проблематики є актуальним,

оскільки дана вразливість вперше з'явилася в списку OWASP і лише коротко описана в ньому. Дане дослідження

спрямоване на виявлення та аналіз архітектурних вразливостей веб-додатків, що виникають внаслідок “Insecure Design”.

Мета полягає не лише у виявленні конкретних вразливостей у процесі розробки та реалізації веб-додатків, але й у розробці

детального переліку рекомендацій, які допоможуть не лише уникнути подібних проблем у майбутньому, але й створити

https://doi.org/

Revniuk O. A., Zagorodna N. V., Kozak R. O., Karpinski M. P., Flud L. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 162–174

174

Computer systems and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

хорошу основу для безпечної розробки веб-додатків з самого початку. Для того, щоб побудувати системний підхід до

безпеки на всіх етапах розробки, тут розглядаються рекомендації зі стандарту «Життєвий цикл розробки програмного

забезпечення» (SDL). Особлива увага приділяється інтеграції принципів безпеки на всіх етапах життєвого циклу розробки.

Аналіз базується на дослідженні існуючих архітектурних рішень, вивченні вразливостей та розробці методів їх усунення.

Розроблений набір рекомендацій щодо підвищення безпеки веб-додатків включає заходи з архітектурного проектування,

процесів верифікації та валідації, а також раннього виявлення потенційних вразливостей. Значну увагу приділено розробці

безпечного коду, впровадженню політик безпеки та організації навчання розробників. Дослідження підкреслює важливість

інтеграції безпеки в процес розробки веб-додатків з самого початку. Наукова новизна полягає в систематизації та розробці

підходів до виявлення та усунення архітектурних вразливостей, спричинених “Insecure Design”. Практична значущість

роботи полягає у підвищенні рівня безпеки веб-додатків, зниженні ризиків для бізнесу та користувачів, а також у

формуванні культури безпеки серед розробників.

Ключові слова: Insecure design; веб-додатки; безпечний цикл розробки; практики безпеки; вразливості додатків;

багаторівнева структура

ABOUT THE AUTHORS

Oleksandr Revniuk - graduate student of Cybersecurity Department. Ternopil Ivan Puluj National Technical University,

56, Ruska Str. Ternopil, 46001, Ukraine
ORCID: https://orcid.org/0009-0005-0511-5354; revo0708@gmail.com.

Research field: Cybersecurity; web application security assessment quality; web development; web application security

Ревнюк Олександр Андрійович - аспірант кафедри кібербезпеки. Тернопільський національний технічний

університет імені Івана Пулюя, вул. Руська, 56. Тернопіль, 46001, Україна

Nataliya Zagorodna - Associate Professor, Head of Cybersecurity Department. Ternopil Ivan Puluj National Technical

University, 56, Ruska Str. Ternopil, 46001, Ukraine

ORCID: https://orcid.org/0000-0002-1808-835X; zagorodna_n@tntu.edu.ua. Scopus Author ID: 57189380553.
Research field: Computer security and cryptography; data mining and analysis; game theory and decision science; signal

processing; operations resear

Загородна Наталія Володимирівна – доцент, завідувачка кафедри Кібербезпеки. Тернопільський національний

технічний університет імені Івана Пулюя, вул. Руська, 56. Тернопіль, 46001, Україна

Ruslan Kozak - Associate Professor, Cybersecurity Department. Ternopil Ivan Puluj National Technical University, 56,

Ruska Str. Ternopil, 46001, Ukraine

ORCID: https://orcid.org/0000-0003-1323-0801; ruslank@tntu.edu.ua. Scopus Author ID: 57193443499.
Research field: Application security; security architecture; threat modeling

Козак Руслан Орестович – доцент, кафедра Кібербезпеки. Тернопільський національний технічний університет
імені Івана Пулюя, вул. Руська, 56. Тернопіль, 46001, Україна

Mikolaj Karpinski - Professor of Cybersecurity Department University of the National Education Commission, 2,

Podchorążych Str. Krakow, 30-084, Poland

ORCID: https://orcid.org/0000-0002-8846-332X; mikolaj.karpinski@up.krakow.pl. Scopus Author ID:57202467671
Research field: Cybersecurity; computer and sensor networks; Internet of Things; security of wireless networks;

particularly in areas cryptography; cryptanalysis and DDoS attacks; lighting engineering; electric and photometric

measurements

Карпінський Микола Петрович - професор кафедри Кібербезпеки. Університет Національної Освітньої Комісії,

вул. Подхоражих, 2. Краків, 30-084, Польща

Liubomyr O. Flud - Associate Professor, Department of Information Systems and Computer Modeling. Ukrainian National
Forestry University, 103, Gen. Chuprynky Str. Lviv, 79057, Ukraine

ORCID: https://orcid.org/0000-0002-8347-4265; flud@nltu.edu.ua. Scopus Author ID:57202467671
Research field: Mathematical and software for automation of modelling and calculation of physical and mechanical

processes; mathematical modelling of wood deformability

Флуд Любомир Олегович - доцент кафедри Інформації системного та комп'ютерного моделювання. Український

національний лісотехнічний університет, вул. Ген. Чупринки, 103. Львів, 79057, Україна

