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ABSTRACT 

The emotional content of music, interwoven with the intricacies of human affect, poses a unique challenge for computational 

recognition and classification. With the digitalization of music libraries expanding exponentially, there is a pressing need for precise, 

automated tools capable of navigating and categorizing vast musical repositories based on emotional contexts. This study advances 

music emotion classification in the field of music information retrieval by developing a deep learning model that accurately predicts 

emotional categories in music. The goal of this research is to advance the field of music emotion classification by leveraging the 

capabilities of convolutional neural networks combined with long short-term memory within deep learning frameworks. The 

contribution of this study is to provide a refined approach to music emotion classification, combining the power of convolutional 

neural networks and long short-term memory architectures with sophisticated preprocessing of the Emotify dataset for a deeper and 

more accurate analysis of musical emotions. The research introduces a novel architecture combining Convolutional Neural Networks 

and Long Short-Term Memory networks designed to capture the intricate emotional nuances in music. The model leverages 

convolutional neural networks for robust feature detection and Long Short-Term Memory networks for effective sequence learning, 

addressing the temporal dynamics of musical features. Utilizing the Emotify dataset, comprising tracks annotated with nine 

emotional features, the study expands the dataset by segmenting each track into 20 parts, thereby enriching the variety of emotional 

expressions. Techniques like the synthetic minority oversampling technique were implemented to counter dataset imbalance, 

ensuring equitable representation of various emotions. The spectral characteristics of the samples were analyzed using the Fast 

Fourier Transform, contributing to a more comprehensive understanding of the data. Through meticulous fine-tuning, including 

dropout implementation to prevent overfitting and learning rate adjustments, the developed model achieved a notable accuracy of 

94.7 %. This high level of precision underscores the model's potential for application in digital music services, recommendation 

systems, and music therapy. Future enhancements to this music emotion classification system include expanding the dataset and 

refining the model architecture for even more nuanced emotional analysis. 
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INTRODUCTION 

In the evolving landscape of Music information 

retrieval (MIR) [1, 2], the classification of musical 

emotions through automated systems is a 

burgeoning domain of research that has captivated 

scholars and technologists alike. The emotional 

content of music, interwoven with the intricacies of 

human affect, poses a unique challenge for 

computational recognition and classification. With 

the digitalization of music libraries expanding 

exponentially, there is a pressing need for precise, 

automated tools capable of navigating and 

categorizing vast musical repositories based on 

emotional contexts. Music emotional recognition 

(MER) is not only applicable to music track 

navigation, search, and recommendation but is also 

widely used in the field of music therapy [3]. 
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Traditional methods of MER, which typically 

involve the manual curation of audio features fed 

into machine learning algorithms, have shown 

limitations in their ability to capture the high-

dimensional nature of music data [4, 5]. 

Deep learning, with its remarkable success in fields 

such as computer vision and natural language 

processing, presents an innovative frontier for 

addressing the challenges of MER.  

Leveraging the capabilities of deep learning, this 

study introduces a hybrid Convolution neural 

network-long short-term memory (CNN-LSTM) 

model designed to extract and process visual audio 

features, transforming the way emotional content is 

discerned in music tracks.  By treating audio signals 

as visual spectrograms, the model captures a 

comprehensive representation of the temporal and 

frequency aspects inherent in musical compositions. 
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A one-dimensional (1D) Convolution neural 

network (CNN) component excels in identifying 

patterns within these visual features, while the Long 

short-term memory (LSTM) layer interprets the 

sequential flow of the music, an essential factor in 

understanding emotional progression. 

LITERATURE OVERVIEW 

Music has long been recognized as a potent 

conduit for expressing a spectrum of human 

emotions. The quest to decode the emotional content 

within musical compositions has garnered 

significant interest across various disciplines. As the 

landscape of technology evolves, especially with the 

advent of deep learning, the methodologies for 

recognizing and categorizing musical emotions are 

being revolutionized [7]. 

The emotional impact of music is diverse and 

profound, yet it remains a deeply personal 

experience, with individual responses to music 

varying widely. 

Music often reflects our emotions, and different 

features in music help us figure out how a song 

might make us feel. For instance, a song with a 

quick beat might make us feel excited or happy, 

while one with a slower beat might make us feel 

calm or sad [8]. To understand these emotions 

better, researchers use different methods to study 

music. They look at things like the Mel frequency 

cepstral coefficients (MFCC) [9], which help 

analyze the sound's pitch, and the Zero crossing rate 

(ZCR) [10], which tells us about the rhythm and the 

pitch analysis to dig deeper into the music's 

characteristics. 

In the last few years, the CNN architecture has 

proven itself not only for image analysis but also for 

sound classification. In a recent study [11], authors 

present how CNN can accurately classify sounds 

from spectrogram images achieved notable success. 

One of the key findings of this study is the 

effectiveness of the CNN model (Fig. 1) in 

classifying environmental sounds.  

 
Fig. 1. Сonvolutional neural network  

model structure 

Source: compiled by the [11] 

The model achieved a classification accuracy of 

77 % on the ESC-10 dataset, while the Tensor Deep 

Stacking Network model with which they were 

compared achieved only 56 % accuracy. 

In the exploration of music emotion 

classification, recent advancements have centered 

around deep learning techniques that interpret music 

as a dynamic language of emotions, capable of 

expressing complex human feelings. Notably, a 

novel approach utilizing an Inception-GRU residual 

structure has been put forth, capturing the intricacies 

of musical expressions with significant efficacy. 

This methodology, grounded in the spectral matrix 

derived from logarithmic short-time Fourier 

transform, has showcased promising results on the 

Soundtrack dataset, achieving an accuracy 

surpassing traditional machine learning models [12]. 

In this paper, the researches presented an optimized 

structure of the Inception-V1 model which combines 

different convolution layers in parallel, and a deeper 

matrix is formed by concatenation the results 

processed by the convolution layers.  

Simultaneously, advancements in music 

emotion classification have seen the integration of 

pitch frequency and band energy distribution 

features, reflecting the nuanced changes in a singer's 

emotional state through music. The innovation in 

this realm involves an enhanced Deep belief network 

(DBN) coupled with a support vector machine for 

classification, leading to a robust fusion 

classification algorithm. This improved DBN 

framework, by assimilating distinctive musical 

features, has demonstrated a considerable 

improvement in classifying music emotions, 

indicating a significant leap forward in the field [13]. 

Deep belief network is a typical deep learning 

model that can learn the corresponding input and 

obtain more abstract and higher-level features [14]. 

The structure of the typical model is shown in Fig. 2.  

 
Fig. 2. Typical deep belief network  

  model structure 

Source: compiled by the [14] 
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The authors take a typical DBN model, which 

includes forward propagation and backpropagation 

processes and is improved by composed of an n-

layer improved Restricted Boltzmann machine 

(RBM) model, a one-layer of traditional RBM 

model, and a Softmax layer (Fig. 3).  

 
Fig. 3. Improved deep belief network  

model structure 

Source: compiled by the [14] 

After that, they integrated the Support Vector 

Machine (SVM) classification algorithm [15], which 

uses a small number of support vectors and thus can 

better represent the classification information of the 

whole training sample set to participate in training 

with the DBN network. 

THE AIM AND OBJECTIVES OF THE 

RESEARCH 

The primary goal of this research is to advance 

the field of music emotion classification by 

leveraging the capabilities of CNNs combined with 

LSTM within deep learning frameworks. To achieve 

this, the research is focused on optimizing the CNN 

architectures coupled with LSTM specifically for the 

intricate task of decoding emotional cues in music. 

To develop deep learning technology, it is 

necessary to solve the following tasks: 

– create a CNN-LSTM model for efficient and 

accurate classification of a wide range of emotions 

in music, leveraging the strengths of CNN and 

LSTM architectures to process complex audio data; 

– employing the Emotify dataset for model 

training and testing, with a focus on preprocessing 

techniques to ensure data quality and relevance; 

– train the model to achieve high accuracy 

with optimized computational resources; 

– test the model across various musical genres 

to demonstrate its effectiveness and adaptability. 

The contribution of this study is to provide a 

refined approach to music emotion classification, 

combining the power of CNN-LSTM architectures 

with sophisticated preprocessing of the Emotify 

dataset for a deeper and more accurate analysis of 

musical emotions. 

METHODS OF AUDIO ANALYSIS 

Audio analysis is a crucial component in the 
process of music emotion classification, where the 
objective is to extract meaningful information from 
raw audio that correlates with human emotional 
states. To achieve this, visualization of audio data is 
often employed, which not only aids in 
understanding the characteristics of the sound but 
also serves as a pre-processing step for further 
analysis and feature extraction. 

Sound Wave Visualization 
The sound wave or waveform display is a 

fundamental method of visual representation, 
illustrating the variations in air pressure or the audio 
signal amplitude over time. This visualization can 
reveal the temporal structure of a sound, including 
its rhythm, pauses, and energy fluctuations, which 
can be indicative of different emotions in music. The 
waveform provides an intuitive understanding of the 
loudness and dynamics of the audio track. 

Fast Fourier Transform  
Fast Fourier transform (FFT) is a popular 

algorithm in the signal processing field. Rather than 
the information, which we can gather from time-
domain analysis, FFT supplies frequency or spectral-
based information about the audio signals. Fast 
Fourier transform implies that any continuous signal 
can be expressed in terms of the sum of delicately 
chosen sinusoidal waves with appropriate frequency, 
amplitude, and phase [16]. 

Spectrum Analysis 
Spectrum analysis (Fig. 4) transforms the audio 

signal from the time domain to the frequency 
domain using FFT. The resulting spectral plot shows 
the distribution of power across various frequency 
components. This analysis can uncover the harmonic 
content and the balance between different frequency 
ranges, which are essential attributes related to the 
perceived 'color' or 'texture' of the sound, often 
associated with specific emotional qualities. 

 
Fig. 4. Spectrogram of audio 

    Source: compiled by the authors 
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Mel Spectrogram 

A Mel spectrogram (Fig. 5) is a more 

sophisticated visual representation that combines the 

concepts of spectrum analysis over time and applies 

a Mel scale to the frequency axis. The Mel scale is 

designed to mimic the human ear's response to 

different pitches, making it highly relevant for audio 

analysis in music emotion recognition. The Mel 

spectrogram provides a time-varying visual 

depiction of the sound's spectral content, 

highlighting the changes in energy across the Mel 

frequency bands over time. This can be particularly 

revealing of the timbral and textural shifts that 

accompany different emotional expressions in 

music. 

 
Fig. 5. Mel spectrogram of audio 

Source: compiled by the authors 

Mel-Frequency Cepstral Coefficients 

Mel-Frequency Cepstral Coefficients (MFCCs) 

(Fig. 6) are derived from the Mel spectrogram and 

represent the power spectrum of a sound using a 

small number of features, which approximate the 

audio signal's overall shape. They are widely used in 

audio recognition tasks as they capture the key 

aspects of the Mel spectrogram that are perceptually 

important to humans. By focusing on these features, 

MFCCs provide a compact and informative 

representation that can be used for machine learning 

models to classify emotional content in music. 

 
Fig. 6. Mel-frequency cepstral coefficient of audio 

Source: compiled by the authors 

DATASET DESCRIPTION 

The Emotify [17] dataset consists of 400 song 

excerpts (1 minute long) in 4 genres (rock, classical, 

pop and electronic). The annotations were collected 

using the GEMS scale (Geneva Emotional Music 

Scales) [18]. Each participant could select 

maximally three items from the scale (the emotions 

that he felt strongly listening to this song. Below 

(Table 1) is the description of the emotional 

categories. 

The annotations produced are spread unevenly 

among the songs, which is caused both by the design 

of the experiment and the design of the game. 

Participants could skip songs and switch between 

genres, and they were encouraged to do so because 

induced emotional response does not automatically 

occur on every music-listening occasion. Therefore, 

less popular (among our particular sample of 

participants) genres received fewer annotations, and 

the same happened to less popular songs. 

Each line in the file corresponds to one 

participant (i.e., annotations are not averaged per 

song).  

This is the description of information found in 

the file: 

 id of the music file; 

 genre of the music file; 

 9 annotations by the participant (whether 

emotion was strongly felt for this song or not). 1 

means emotion was felt; 

 participant's mood prior to playing the game; 

 liking (1 if the participant decided to report 

he liked the song); 

 disliking (1 if participant decided to report 

he disliked the song); 

 age, gender and mother tongue of the 

participant (self-reported). 

DATASET PREPROCESSING 

The dataset initially contained diverse 

emotional feature values for each music file, as rated 

by different individuals. To create a unified 

representation, these values were averaged for each 

track, resulting in a consolidated emotional feature 

set per song. 

The division of music tracks into segments was 

due to the relatively modest size of the data set of 

400 tracks. By dividing each minute track into 10 

and 20 shorter segments of approximately 6 and 3 

seconds each, the size of the dataset was increased 

by a factor of 10 and 20, so that we ended up with 

4000 and 8000 sample songs as two different 

datasets instead of 400. 

Following the segmentation, using the python 

library librosa were produced feature extraction that 

included the chroma-stft, rms, spectral centroid, 

spectral bandwidth, spectral rolloff, zero-crossing 

rate, harmonic content, tempo, and Mel-frequency 

cepstral coefficients (MFCCs).  
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Table 1. Description of the emotional categories 

Emotional category Explanation 

Amazement Feeling of wonder and happiness 

Solemnity Feeling of transcendence, inspiration. Thrills 

Tenderness Sensuality, affect, feeling of love 

Nostalgia Dreamy, melancholic, sentimental feelings 

Calmness Relaxation, serenity, meditativeness 

Power Feeling strong, heroic, triumphant, energetic 

Joyful activation Feels like dancing, bouncy feeling, animated, amused 

Tension Nervous, impatient, irritated 

Sadness Depressed, sorrowful 
Source: compiled by the authors 

All features, except of MFCCs, represent 

temporal characteristics of sound. These features, 

therefore, are suitable for LSTM layers, as they can 

track and analyze the evolution of these temporal 

characteristics over time, crucial for understanding 

the structure and progression of music.  

Mel-frequency cepstral coefficients capture the 

timbral characteristics of audio signals, representing 

the texture and quality of sounds. They encapsulate 

complex relationships between different frequencies, 

which make them well-suited for CNNs. 

All these features encapsulate the core elements 

that convey emotion in music, such as rhythm, pitch, 

and timbre, and are instrumental for the subsequent 

machine learning tasks. 

The dataset's class distribution was observed to 

be imbalanced (Fig 7).  

 
Fig. 7. Count of imbalanced emotional features 

Source: compiled by the authors 

To rectify this imbalance, was implemented 

Synthetic minority oversampling technique 

(SMOTE) [19]. SMOTE is an oversampling 

technique where the synthetic samples are generated 

for the minority class. After applying SMOTE 

method, the amount of data in the classes was 

equalized to 2320. 

This algorithm helps to overcome the 

overfitting problem posed by random oversampling. 

It focuses on the feature space to generate new 

instances with the help of interpolation between the 

positive instances that lie together.  

This method not only augments the 

underrepresented classes by generating new, 

synthetic samples but does so in a manner that 

respects the underlying distribution of each class, 

thus preserving the authenticity of the dataset. 

Once the features were extracted and the class 

balance addressed, were applied normalization, label 

encoding and dataset splitting to train, test and 

validation parts of the feature set (70%, 15%, 15%). 

MODEL ARCHITECTURE 

In the development of a music emotion 

classification model, a combined CNN-LSTM 

architecture (Fig. 8) was utilized to exploit both the 

spatial and temporal characteristics of the audio 

features. 

The input to the CNN block consists of a multi-

dimensional array where each dimension represents 

different extracted audio features, such as Chroma-

STFT, RMS, Spectral Centroid, Spectral Bandwidth, 

Spectral Rolloff, Zero-Crossing Rate, Harmonic 

Content, Tempo, and MFCCs. These features are 

structured to form a consistent input shape suitable 

for convolutional processing, often resembling a 

time-frequency representation of the audio signal. 

The model begins with a three Conv1D layers, 

each followed by batch normalization, max pooling, 

and dropout, which work together to extract and 

refine feature representations from the input data. 

These convolutional layers progressively increase in 

depth, starting from 128 filters and expanding to 

512, allowing the network to learn a hierarchy of 

features with increasing complexity.  
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Fig. 8. Сonvolutional neural network-Long short-term memory model architecture 
Source: compiled by the authors 

Batch Norm is a normalization technique done 

between the layers of a Neural Network instead of in 

the raw data [20]. It is done along mini batches 

instead of the full data set.  

It serves to speed up training and use higher 

learning rates, making learning easier. the 

normalization formula of Batch Norm is as follows: 

𝑧𝑁 = (
𝑧 − 𝑚𝑧

𝑠𝑧
), (1) 

where 𝑚𝑧 is the mean of the neurons’ output and 𝑠𝑧 

is the standard deviation of the neurons’ output. 

Max pooling significantly reduces the 

dimensionality of the data, ensuring that the most 

important features are preserved. The max pooling 

means moving the window along the matrix with 

data [21]. From the pixels falling into its field of 

view, the maximum is selected and moved to the 

resulting matrix.  

To prevent overfitting was also used dropout. 

This method randomly disables a subset of neurons 

during training, forcing the network to learn more 

diverse features and, therefore, improving 

generalization [22]. 

The Rectified Linear Unit (ReLu) was chosen 

as the activation function for CNN layers. ReLU 

introduces non-linearity into the network, allowing it 

to learn complex patterns in the data [23]. Its 

simplicity and efficiency in computation make it a 

popular choice in deep learning architectures. 

Formula for ReLu activation function: 

𝑓(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥(0, 𝑥). (2) 

Or it can be written as:  

< 𝑅𝑒𝐿𝑈′(𝑥) =  {
0, 𝑓𝑜𝑟 𝑥 < 0
1, 𝑓𝑜𝑟 𝑥 ≥ 0

. 
(3) 

After the convolutional layers, two Long Short-
Term Memory (LSTM) layers were incorporated to 
capture the temporal dynamics inherent in music 
tracks. LSTMs are particularly advantageous for this 
application due to their capacity to remember 
information over extended periods, making them 
suitable for sequence prediction problems such as 
time-series analysis found in music tracks. 

The output from the LSTM layers is then fed 
into dense layers with ReLU and Softmax 
activations. The ReLU layer serves as a fully 
connected layer that introduces non-linearity and 
aids in learning complex patterns, while the Softmax 
layer maps the final output to a probability 
distribution over the predicted classes. Batch 
normalization and dropout are consistently used 
throughout the model to ensure generalization and 
prevent overfitting. It leveraged the features distilled 
by the previous layers to perform the emotion 
classification task, outputting a probability 
distribution across the predefined emotion labels.  

The summary representation of the network 
presented at Table 3. 

The total number of total parameters is 
2507466, where trainable parameters is 2505034, 
and non-trainable – 2432. 
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Table 3. Summary representation of the 

network 
Layer (type) Output Shape Param 

Conv1d_170  (None, 28, 128) 640 

Conv1d_171  (None, 28, 128)      65664 

Batch_normalization_158 (None, 28, 128)     512 

Max_pooling1d_86 (None, 14, 128) 0 

Dropout_158 (None, 14, 128) 0 

Conv1d_172 (None, 14, 256)   131328 

Conv1d_173 (None, 14, 256) 262400 

Batch_normalization_159 (None, 14, 256) 1024 

Max_pooling1d_87 (None, 7, 256) 0 

Dropout_159 (None, 7, 256) 0 

Conv1d_174 (None, 7, 512) 524800 

Vonv1d_175 (None, 7, 512) 104908 
Batch_normalization_160 (None, 7, 512) 2048 

Max_pooling1d_88 (None, 3, 512) 0 

Dropout_160 (None, 3, 512) 0 

Lstm_50 (None, 3, 128) 328192 

Batch_normalization_161 (None, 3, 128) 512 

Dropout_161 (None, 3, 128) 0 

lstm_51 (None, 128) 131584 

Batch_normalization_162 (None, 128) 512 

Dropout_162 (None, 128) 0 

Dense_46 (None, 64) 8256 

Dropout_163 (None, 64) 0 

Batch_normalization_163 (None, 64) 256 

Dense_47 (None, 10) 650 
Source: compiled by the authors 

The final flow of the proposed method for 

music emotion classification is illustrated in Fig. 9. 

The architecture represents a multi-stage 

process starting with a raw audio file. This file is 

first segmented into 20 3-second segments, allowing 

for more detailed and focused feature extraction. 

Features are then extracted from these segments, 

capturing both the spectral and temporal 

characteristics inherent to the audio. After scaling 

and normalization, these features are then fed into 

the CNN-LSTM model, a hybrid neural network., 

that employs convolutional layers to detect patterns 

and structures within the features and LSTM layers 

to understand the temporal progression of these 

patterns. The output from this model gives a 

prediction of the music's emotion. 

EXPERIMENT AND RESULTS 

The experiment was performed on the two 

types of preprocessed Emotify dataset. In the first 

type, the original audio files were divided into 10 

segments, resulting in a data set of 4,000 audio files 

of 6 seconds each. In the second type – each audio 

file was divided into 20 segments; the result dataset 

is 8,000 audio files of 3 seconds each. Each track 

within the dataset was distinctly characterized by a 

prominent emotional label, as perceived by human 

listeners and devoid of lyrical content to ensure the 

focus remained on the music's instrumental and 

timbral properties. The audio files were maintained 

in a stereo mp3 format with a 44.1 kHz sampling 

rate.  

The optimization method used was RMSprop. 

RMSProp is an unpublished adaptive learning rate 

optimizer proposed by Geoff Hinton [24, 25]. The 

motivation is that the magnitude of gradients can 

differ for different weights and can change during 

learning, making it hard to choose a single global 

learning rate. RMSProp tackles this by keeping a 

moving average of the squared gradient and 

adjusting the weight updates by this magnitude. The 

gradient updates are performed as: 

𝐸[𝑔2]𝑡 = 𝛾𝐸[𝑔2]𝑡−1 + (1 − 𝛾)𝑔𝑡
2, 

 

(4) 

𝜃𝑡+1 = 𝜃𝑡 −
𝑛

√𝐸[𝑔2]𝑡 + 𝜖
𝑔𝑡 , (5) 

 

 

Fig. 9. Full flow of music emotion classification based on the  

Convolution Neural Network – Long Short-Term Memory model 
Source: compiled by the authors 
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where 𝐸[𝑔]  is the moving average of squared 

gradients, 𝑛  is the learning rate. Hinton suggests 

𝛾=0.9, with a good default for 𝑛 as 0.001. 

RMSprop involved dynamic adjustments to the 

learning rate, implemented through the 

ReduceLROnPlateau callback [26], which 

methodically reduced the learning rate once learning 

stagnated, thereby enhancing the convergence 

process. The code was written in Python using the 

Librosa library [27], and the training model used the 

Keras library [28], also written in Python. 

The proposed neural network was compared 

with recently proposed models, as represented in 

Table 4, including two types of preprocessed 

datasets. The inception-GRU Residual Structure 

method [12] achieved 84.23 % accuracy in music 

emotion classification on the Soundtrack dataset. 

Improved deep belief network [13] achieved 83.35% 

accuracy. The proposed method in this study 

achieved 74.8 % accuracy on the 10-segment dataset 

and 94.7 % – on the 20-segment dataset. The 

experimental results reflected that the proposed 

network model achieved a higher accuracy. 

Table 4. Comparison of accuracy of different 

models 

Method Accuracy 

Inception-GRU Residual Structure 

(Soundtrack dataset) 

84.23 % 

Improved deep belief network (FMA)  83.35 % 

Proposed CNN-LSTM network (10 

segments Emotify dataset) 

74.8 % 

Proposed CNN-LSTM network (20 

segments Emotify dataset) 

94.7 % 

Source: compiled by the authors 

Training and validation accuracy and loss are 

shown in Fig. 10 and Fig. 11, respectively.  

As a loss function, sparse categorical cross-

entropy was used. Variation of the categorical cross-

entropy loss used for multi-class classification tasks 

where the classes are encoded as integers rather than 

one-hot encoded vectors. Given that the true labels 

are provided as integers, we directly select the 

correct class using the provided label index instead 

of summing over all possible classes. Thus, the loss 

for each example is calculated as 

𝐻(𝑦, 𝑦̂) = − log(𝑦𝑖̂, 𝑦𝑖). (6) 

 

Fig. 10. Training and validation accuracy 
Source: compiled by the authors 

 

Fig. 11. Training and validation loss 
                  Source: compiled by the authors 

And the final sparse categorical cross-entropy 

loss is the average over all the samples: 

𝐻(𝑌, 𝑌̂) = −
1

𝑛
∑ log(𝑦𝑖̂, 𝑦𝑖) ,

𝑛

𝑖=1

 
(7) 

here 𝑦𝑖 is the true class of the i-th sample and 𝑦𝑖̂, 𝑦𝑖 

is the predicted probability of the i-th sample for the 

correct class 𝑦𝑖. 

Table 5 shows the results of precision, recall 

and F-1 [30] score with comparison between 10 

segments and 20 segments datasets. 

The confusion matrix is presented in Fig. 12. 

The confusion matrix is a tool for visualizing the 

performance of a classification algorithm on a data 

set for which the true values are known [29]. It helps 

to understand which classes the algorithm mixes 

with each other. 
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Table. 5 Results of precision, recall and F-1 score for two types of dataset 

 

Class 

10 segments/6 sec each 20 segments/3 sec each 

Precision Recall F1-score Precision Recall F1-score 

Amazement 0.80 0.67 0.73 1.00 1.00 1.00 

Calmness 0.76 0.77 0.77 0.89 0.84 0.86 

Joyful activation 0.78 0.82 0.80 0.95 0.90 0.92 

Nostalgia 0.73 0.70 0.71 0.92 0.89 0.91 

Power 0.82 0.74 0.78 0.95 0.98 0.96 

Sadness 0.59 0.61 0.60 0.92 0.99 0.96 

Solemnity 0.72 0.72 0.72 0.98 1.00 0.99 

Tenderness 0.67 0.59 0.62 0.98 1.00 0.99 

Tension 0.71 0.71 0.71 0.94 0.95 0.95 

Source: compiled by the authors 

 
Fig. 12. Confusion matrix  
   Source: compiled by the authors 
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The main components of the confusion matrix: 
       – True Positive (TP): Number of positive samples 

correctly classified as positive. 

         – False Positive (FP): Number of negative samples 

incorrectly classified as positive. 

        – True Negative (TN): Number of negative samples 

correctly classified as negative. 

        – False Negative (FN): Number of positive samples 

incorrectly classified as negative. 

 

CONCLUSIONS 

This study represents a significant milestone in 

Music information retrieval (MIR), particularly in 

the classification of emotional content in music. By 

developing a CNN-LSTM network and utilizing the 

Emotify dataset, the research introduced innovative 

methodologies in data processing and model 

architecture. The segmentation of original music 

tracks into 4000 six-second clips and 8000 three-

second clips was a key innovation, augmenting the 

data's diversity and offering the network a richer 

learning environment. 

The architecture, combining convolutional 

layers and LSTM units, was adept at capturing both 

the subtle features and the temporal dynamics of 

musical emotions. This synergy resulted in the 

model achieving an exceptional accuracy rate of 

94.7 % on the three-second segments. This perfor-

mance not only demonstrates the effectiveness of the 

segmentation approach but also positions the CNN-

LSTM framework as a leading contender in the 

domain of music emotion classification. 

Compared to other recent models, such as the 

Inception-GRU Residual Structure model and the 

Improved deep belief network model, this study 

demonstrated higher accuracy, which emphasizes its 

reliability and effectiveness. The first comparable 

model scored an accuracy of 84.23 %, and the 

second model scored 83.35 %. This can be attributed 

in part to the significant preprocessing of the music 

data, which involved intricate feature extraction and 

careful consideration of the emotional attributes 

within the music. 

The advances made in this research offer 

practical applications in the development of more 

nuanced and emotionally intelligent music 

recommendation systems and therapeutic 

interventions. The potential for enhancing user 

interaction through emotionally responsive 

technologies is enormous, opening new avenues for 

MIR research. 

In summary, paves the way for future 

advancements in this field. The combination of 

detailed data preprocessing, innovative model 

architecture, and impressive classification accuracy 

highlights the potential of deep learning techniques 

to understand and interpret the rich emotional 

tapestry of music. 
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АНОТАЦІЯ 
 

Емоційний зміст музики, переплетений із тонкощами впливу на людину, створює унікальний виклик для систем 

комп’ютерного розпізнавання та класифікації. Оскільки оцифрування музичних бібліотек експоненціально розширюється, 

існує нагальна потреба в точних автоматизованих інструментах, здатних навігації та класифікації величезних музичних 

сховищ на основі емоційного контексту. Це дослідження покращує класифікацію музичних емоцій у сфері пошуку музичної 

інформації шляхом розробки моделі глибокого навчання, яка точно передбачає емоційні категорії в музиці. Метою цього 

дослідження є розвиток класифікації музичних емоцій шляхом використання можливостей згорткових нейронних мереж у 

поєднанні з довготривалою короткочасною пам’яттю в рамках глибокого навчання. Внесок цього дослідження полягає в 

тому, щоб забезпечити вдосконалений підхід до класифікації музичних емоцій, поєднуючи потужність згорткових 

нейронних мереж і архітектур довготривалої короткочасної пам’яті зі складною попередньою обробкою набору даних 
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Emotify для глибшого та точнішого аналізу музичних емоцій. Дослідження представляє нову архітектуру, що поєднує 

згорткові нейронні мережі та мережі довготривалої короткочасної пам’яті, призначені для вловлювання складних емоційних 

нюансів у музиці. Модель використовує згорткові нейронні мережі для надійного виявлення функцій і мережі довготривалої 

короткочасної пам’яті для ефективного навчання послідовності, звертаючись до часової динаміки музичних особливостей. 

Використовуючи набір даних Emotify, що включає доріжки з дев’ятьма емоційними характеристиками, дослідження 

розширює набір даних, сегментуючи кожну доріжку на 20 частин, таким чином збагачуючи різноманітність емоційних 

проявів. Для протидії дисбалансу набору даних, забезпечуючи рівномірне представлення різних емоцій, було застосовано 

такі методи, як техніка передискретизації синтетичної меншості. Спектральні характеристики зразків аналізували за 

допомогою швидкого перетворення Фур’є, що сприяло більш повному розумінню даних. Завдяки ретельному тонкому 

налаштуванню, включаючи реалізацію відсіву для запобігання надмірному оснащенню та коригування швидкості навчання, 

розроблена модель досягла помітної точності 94,7 %. Цей високий рівень точності підкреслює потенціал моделі для 

застосування в цифрових музичних службах, системах рекомендацій і музичній терапії. Майбутні вдосконалення цієї 

системи класифікації музичних емоцій включають розширення набору даних і вдосконалення архітектури моделі для ще 

більш тонкого емоційного аналізу. 

Ключові слова: глибоке навчання; класифікація емоцій; нейронна мережа; спектральний аналіз; згорткова нейронна 

мережа 
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