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ABSTRACT

The article describes an approach to the systematic use of nonlinear data filtering methods in tasks of intelligent data analysis
and machine learning. The concepts of filtering and non-linear filtering are considered. The analysis of modern methods of optimal
and probabilistic nonlinear filtering of statistical data and the peculiarities of their application in solving the problems of estimating
the states of dynamic systems is carried out. The application of the Kalman filter and its variants for solving nonlinear filtering
problems is analysed. The classification of nonlinear filtering methods is given. In the basis of the classification are digital, optimal
and probabilistic filters. Non-recursive and recursive digital filters are studied. The formulation of the problem of optimal filtering
based on the Kalman filter is considered. The filtering equation for a free dynamic system based on the state space model of a
discrete system is given. The extended Kalman filter and its modifications are considered. The Bayesian method of estimating the
state of a nonlinear stochastic system is presented. The problem of linear and nonlinear probabilistic filtering is considered. Three
filters are considered as examples of probabilistic filters: an unscented Kalman filter, a point mass filter, and a granular filter. The
granular filtering algorithm and its modifications are considered in detail. The architecture of the information-analytical system for
solving forecasting problems has been developed. The system consists of the following main components: user interface, information
storage subsystem, data analysis and pre-processing subsystem, modelling subsystem, forecast construction and evaluation
subsystem, visualization subsystem. As an example of forecasting based on the systematic use of non-linear filtering methods, the
task of forecasting the prices of Google shares is considered. A comparison of the quality assessment results of basic models and
forecast values without filtering and with different options for applying filters was carried out. To improve the quality of forecasting
based on prepared data and based on nonlinear filtering methods, a method based on combined forecasts was used to solve the
forecasting problem. The results of forecasting using the combined model are presented.
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INTRODUCTION

In today's data-driven world, huge amounts of
information are processed every day. To analyze all
this data, companies need to apply data mining
information technologies and techniques to analyze
and identify specific subsets of information to make
informed decisions. Data mining is the process of
discovering patterns in data by cleaning raw data,
building models, and testing those models. With the
help of methods of intelligent data analysis, large

Data mining uses techniques at the intersection
of statistics, database management, and machine
learning. In other words, data mining includes
different groups of techniques, from collection to
visualization and extraction of information from
data. One of these groups of intelligent data analysis
methods is filtering.

Data filtering is the process of processing large
amounts of data to identify specific subsets of
information based on defined criteria. This process

volumes of information are studied, and new
information is generated, revealing regularities,
correlations and anomalies of the collected data.
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allows you to focus on specific data and exclude
others that are not relevant to the process being
investigated. Data filtering is an important
component of the process of preprocessing a set of
real data, which is used to solve problems of
intelligent data analysis and machine learning
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(classification, clustering, regression, etc.). The main
goal of the filtering stage is to select a useful part of
the data spectrum for further processing and
modeling and to retain the noisy or simply
unnecessary part of the data set for analysis. It helps
you understand relevant data and then use that
information to access possible outcomes. Data
filtering is also necessary for data visualization. Data
visualization tools allow you to quickly analyze data
and make informed decisions based on the
information obtained. When the data is filtered, it's
easier to create charts and graphs that provide
meaningful statistics. A wide variety of filtering
methods are available in data mining. Filtering
methods are based on machine learning methods,
statistical models and deep learning algorithms.

Non-linear filtering methods are of greatest
interest. The main task of linear and non-linear
filtering is the formation/calculation of statistical or
probabilistic inferences regarding the state of the
system based on the available measurements. Within
the Bayesian approach to data analysis, this is done
by calculating or approximating the posterior
distribution of the state vector, provided that all
measurements and estimates of unmeasured
components available at the time of calculation are
used. Since the probability distribution function of
measurements contains practically all available
statistical information about the object under study,
its evaluation is a fairly complete solution to the
problem of assessing the condition and forecasting
its development. The purpose of the paper is to study
the systematic use of nonlinear filtering methods in
machine learning problems.

ANALYSIS OF LITERARY DATA

The initial applications of filtering were used to
solve technical problems. After the fundamental
works on linear filtering by Kalman [1] and Kalman
and Bucy [2], the theory of filtering was applied to
solve the problems of determining satellite orbits
and to solve various problems of navigation, as well
as for the problems of controlling spacecraft [3].
Currently, the application of nonlinear filtering
methods varies from engineering problems, machine
learning problems [4], as well as various problems in
economic sciences, finance, medicine, and natural
sciences [5, 7], [8, 9], [10].

Modern methods of optimal and probabilistic
nonlinear filtering of statistical (experimental) data

and features of their application are used in solving
the problem of assessing the states of dynamic
systems, in particular, the tracking of moving objects
[3]. Papers [6,7], [8,9], [10,11] consider the
modeling and estimation of the trajectory of a
moving object based on modern filtering methods,
as well as the use of a filtering algorithm of the
“granular filter” type, which is increasingly widely
used in solving the problems of estimating and
predicting the states of dynamic systems.

Using different filtering methods, analysts offer
different approaches to data processing in order to
better understand how to process and analyze a large
volume of data and draw conclusions based on the
results. Therefore, the application of filtering in the
tasks of intelligent data analysis and machine
learning requires the systematic use of various
filtering methods.

For models of nonlinear systems, nonlinear
filtering methods are most often used to increase the
accuracy of estimation. The most widely used
nonlinear filter in solving practical engineering
problems is the extended Kalman filter (EKF) due to
its simple algorithm and small amount of calculation
[12]. The extended Kalman filter uses Taylor series
expansion to approximate the model of a nonlinear
system. When the nonlinearity is complex, the
filtering accuracy will be reduced or even divergent
due to the high-order truncation error [13].
Therefore, to increase the accuracy in this work, it is
suggested to use the extended Kalman filter of the
second order and the extended Kalman filter of the
higher order consistently, but at the same time, the
computational complexity of the filtering procedure
is significantly increased.

In [14], the iterated extended Kalman filter
(IEKF) is presented, which is obtained by dividing
the one-stage EKF update into several time steps and
gradually updating the states according to the
nonlinear gradient of the measurement function.

In [14], numerical integration approximation
methods were applied to nonlinear filtering. The
Gaussian Hermite filter (GHF), the unscented
Kalman filter (UKF) and the cubature Kalman filter
(CKF) were successively proposed. Gaussian
Hermite filter is a polynomial integral
approximation filtering algorithm for nonlinear
system models [15] that uses Gauss-Hermite
polynomials to approximate the probability density
in Gaussian filtering. Unscented Kalman filter takes
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the UT criterion to select deterministic sigma sample
points in the initial set of state distribution points,
introduces the sample points into a nonlinear system,
and obtains the mean and covariance of the posterior
probability density function through the point set
transformation [16, 17]. Unscented Kalman filter has
less computation and better approximation
performance than EKF. The CKF is based on the
spherical-radial criterion and uses a group of
cubature points with the same weight to calculate the
mean and covariance of the state variables [18]. In
works [19, 20], a comparative analysis of UKF and
CKF is carried out for low- and high-dimensional
models in nonlinear conditions. The simulation
results show that the CKF has optimal numerical
stability and filtering accuracy wunder high
dimensional conditions. A granular (particle) filter
(PF) is not limited by the linearization error or
Gaussian noise assumption and approximates a
probability density function corresponding to a non-
linear function. However, it has a significant volume
of calculations for a system that solves the problem
of data processing in real time [21]. This
phenomenon is often found in applied filtering
systems with high accuracy [22]. Due to the non-
linear distribution of the measurement domain, the
existing non-linear filters have specific problems in
terms of state estimation accuracy and filter
consistency, and even filter divergence may occur in
EKF [23]. The given examples demonstrate an
increase in the accuracy of the system state
assessment and the efficiency of filtering with the
systematic use of nonlinear filtering methods.

FEATURES OF NONLINEAR DATA
FILTERING METHODS

The article examines effectiveness of the
systematic use of nonlinear filters during data
preprocessing in machine learning tasks.

The article solves the following problems:
research of modern methods of nonlinear filtering:
digital, optimal and probabilistic; research on the
systematic application of nonlinear filtering methods
in machine learning problems; development of the
architecture of an information-analytical system for
solving forecasting problems; research of granular
filtering algorithms; study of the effectiveness of the
systematic use of nonlinear filtering methods in
solving applied machine learning problems.

FEATURES OF BUILDING
STRUCTURAL MODELS OF TIME SERIES

Data filtering is an important component of the
process of preprocessing a set of real data, which is
used in intelligent data analysis and in solving
machine learning problems. The main purpose of
using filtering methods is to select the necessary part
of the data for further processing when solving
applied problems. In modern data preprocessing
procedures, the following types of filters are most
common: digital, optimal, and probabilistic filters.
The classification of filter types is presented in
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Fig. 1. Classification of filters

Source: compiled by the authors
Digital filtering. Digital filters (DF) are divided
into two classes: non-recursive and recursive filters.
Mathematically, the operation of a non-recursive
filter can be represented, for example, by an
autoregressive equation of the AR (p) type [21]:

y(k) = apx(k) + a;x(k — 1)+... +a,x(k — p),

where y(k) is the observation value after filtering;

x(k),x(k —1),...,x(k —p) is preliminary
observation data; ag,ay, ..., a, are parameters
(coefficients) that determine the amplitude-

frequency response (AFR) of the filter. Next, the
presented expression represents the convolution of
the input signal with a certain set of filter
coefficients.

Non-recursive filters have advantages compared
to recursive ones: they are always stable and allow
obtaining arbitrary frequency response. However,
they require more resources and have long delays.

Mathematically, the operation of the recursive
filter is described by the formula:

y(k) = apx(k) + a;x(k — 1) + -+ apx(k —p) —
—byy(k — 1) — byy(k — 2) — - = bgy(k — q).
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Recursive filters have the following advantages:
they are faster and simpler compared to non-
recursive filters, and they also have analogy
prototypes. Their disadvantages include the fact that
their frequency response must be selected from real
prototype filters, and they are not always stable.

Today, there are highly developed methods of
optimization design of DF [24, 25], which allow
designing effective filter structures with frequency
characteristics of a predetermined shape. Many
applied modelling systems have a toolkit for DF
design, which consists of a set of appropriate
functions, which greatly facilitates the calculation
process.

Optimal filtering. The task of refining estimates
of the process state under influence of random
external disturbances and measurement noise
(errors) is successfully solved using optimal filtering
methods, in particular, the Kalman filtering (KF)
algorithm. To date, there are several modifications
of the filtering approach that provide the possibility
of optimal data smoothing, calculation of short-term
forecasts of states using optimal estimates, as well as
estimation of immeasurable components of the state
vector and some parameters of the mathematical
model.

The main filtering equation for a free dynamic
system (control actions are not taken into account) is
based on the state space model of a discrete system
and can be written as follows [1, 26]:

R(k) = AR(k — 1) + K(k)[z(k) — HAR(k — 1)],

where X(k) is optimal estimate of the state vector
x(k) at time k; A is matrix of state transitions (or
matrix of system dynamics); z(k) is vector of initial
system measurements; H is matrix of measurement
coefficients; K(k)is optimal matrix of weighting
coefficients, which is calculated as a result of the
minimization of the functional:

J = min E{[&(k) — x(k)]" [%(k) — x(k)]}-

The expression means minimization of the
mathematical expectation of the squared errors of
the state estimation. The value of K is determined by
solving the corresponding Riccati equation.

The state estimation algorithm provides
(automatically) the ability to estimate the state
prediction one step ahead according to the equation:

Rk + 1|k) = AR (k|k).

This equation can be used to calculate multistep
forecasts as follows:

R(k + s|k) = AS®(k|k),

where s is number of forecast steps.

Next, the Kalman filter performs the task of
smoothing and forecasting taking into account
statistical uncertainties such as covariance and
mathematical expectation for two stochastic
processes:  external state perturbations and
measurement errors. Therefore, the use of the filter
expands the data processing system due to additional
functionality aimed at combating statistical
uncertainties. In addition, the adaptive version of the
filter provides the possibility of real-time estimation
of the statistical characteristics of two random
processes. Indicators that cannot always be
evaluated a priori lead to the need to build adaptive
evaluation schemes.

The extended Kalman filter (EKF) is used to
estimate the state of nonlinear non-Gaussian
processes. This is a kind of linear Kalman filter, but
it is applied to a linearized model of the system
under study with Gaussian noise and the same
moments of the first and second order. The extended
KF approximates a non-linear function (the model of
the system generating the data being processed)
using a second-order Taylor expansion. However,
the disadvantage of the approach is the replacement
of the actual probability distribution of the data with
a normal one, which leads to the use of the given
model of system dynamics, and this may turn out to
be unsuitable for further use [5, 10], [26].

Modified Extended Kalman Filter (MEKF). A
more complex type of nonlinearity of the model,
which is represented by the dependence of state
variables X(t) with continuous time on possible
discrete variables, D(k), k = 0,1,2, ..., which may
have non-stationary probability  distributions
different from the distribution of continuous
variables. Such situations require specific statements
for all possible hypotheses related to possible values
of discrete variables. The number of hypotheses can
grow exponentially with the length of the discrete
data sample, which can ultimately lead to high
computational costs and generally unacceptable
execution time of the filter implementation. To
handle the following cases, another modification of
the filter has been proposed, which involves the use
of a random variable H(k) , each value
corresponding to one of the possible hypotheses.
The distribution H(k), corresponds to the probability
of the chosen hypothesis. In the MEKF
implementation process, all combinations of values
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H(k), and D(k + 1)are taken into account, which
makes it possible to analyse K X |D| component.
Each new hypothesis is normalized on the incoming
measurements, Y(k + 1), and due to Bayesian
conditioning, the mixture weights are adjusted, as
well as the parameters of the multivariate Gaussians.
The result of this procedure is an adequate model
and, as a result, a higher quality of the final result -
the quality of the state assessment, forecast and
alternative decisions based on it.

The general form of the Bayesian state
estimation method. The dynamics of a nonlinear
stochastic system can be described by discrete state
space equations as follows [26]:

x(k) = flx(k — 1), w(k — 1)], (1)
z(k) = hlx(k), v(k)], 2)

where (1) is the equation of state; (2) is
measurement equation; X(k) is vector of variable
states with a non-Gaussian distribution Py xy; z(k) is
vector of real measurements (measurements can be
complex numbers, but converted to real values);
w(k) is vector of random external disturbances with
a known probability distribution Py ; v(k) is
measurement noise vector (or measurement errors)
with a known probability distribution Py,yy; f, h are
non-linear deterministic functions; k = 0,1,2,3, ... is
discrete time.

Random disturbances in equations (1) and (2)
are usually considered in an additive form, which
facilitates estimation of model parameters, but
makes it possible to build a model with a high
degree of adequacy. If necessary, model (1), (2) can
be extended by a vector of deterministic control
influences u(k) . The first measurement of z(1)
makes it possible to estimate the state of x(1), and
in the future, new measurements will lead to the
estimation of future states.

We introduce the following notations for the
sequence of state vectors:

x(1:k) = {x(1),x(2), ..., x(k) },

they will be used later.
In terms of conditional probability distributions,
model (1), (2) can be written as follows [26]:

x(k)~Px(l)|x(k — D],
z(k)~Plz(k)|z(k — 1)].
The problem of state estimation from the point

of view of the Bayesian approach to data processing
consists in the generation (estimation) of the

posterior probability distribution P[x(k)|z(1: k)]
based on the sequence of measurements z(1:k) =
{z(1),z(2),...,z(k)}.

Equation (1) is the predicted conditional
transition distribution

P[x(k)|x(k — 1), z(1:k — 1)],

which is based on the states for previous moments
and all available measurements, starting from the
first and to z(1: k — 1).

Equation (2) defines the likelihood function for
a current measurement with known current state,
Plz(k)|x(1:k)].

The a priori probability of this state can be
determined as follows:

Plx(l)]z(1: k — 1)],

and it can be calculated using the Bayes theorem
according to the expression [26]:

P[x(k)|z(1:k — 1)] =

= [P[x(0)|x(k — 1), z(1:k — DIP[x(k — (3)
—1)|z(1: k — 1)]dx(k — 1).

The observation equation (2) defines the
likelihood function for a current measurement with a
known current state, P[z(k)|x(1: k)].

On the other hand, the probability density
function of the state of the previous time interval can
be defined as follows:

P[x(k — 1)|z(1: k — 1)].

At the stage of correction, state estimates are
calculated wusing distribution function of the
following type:

Plx(lz(1:k = D] = cPla()lx(L:k =
—1)] @ P[x(k)|z(1:k — 1)],

where c is normalizing constant.

The filtering problem consists in the recursive
estimation of the first two moments of the state
vector x(k) with known dimensions, z(1: k).

For some general type of distribution P(x), the
problem is to estimate the mathematical expectation
for any (actual) function x(k), such as (g(x))p(x)»
using equations (3) and (4) and calculating an
integral of the type:

(9 = [ gxX)P(x)dx. )

But the integral cannot be taken in a closed
form for the general type of multidimensional
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distributions; its value should be approximated using
known numerical procedures [26].

Equations (1) and (2) are often considered with
additive random Gaussian components in the
following form:

x(k) = flx(k = D] +w(k - 1), (6)
z(k) = h[x(l)] + v(k), (7

where w(k) and v(k) are random vector Gaussian
processes, which are represented in the simulation
model by vector variables with zero mean and
covariance matrices Q (k) and R(k), respectively.

The initial state x(0) is also modelled by
random values, X, which are independent of both
noise processes and have a covariance matrix P§*.

Assume that the nonlinear deterministic
functions f, h and the covariance matrices Q and R
are stationary, that is, their parameters do not depend
on time. Then

Plx(k)|x(k — D]|z(1:k —1)] =
N(x(k); f(x(k — 1)), Q),
where N(t;T,X) is multidimensional Gaussian

distribution, which is generally defined by the
expression [26]:

®)

1 1
k) P {_ 2Lt~

~"@)7 e - 1l}.
Now equation (3), which determines the a priori
probability of states, can be written in the form:
Plx(k)|z(1:k —1)] =

= [N [x(k); f(x(k — 1)), Q1P[x(k —
—1)|z(1: k — 1)]dx(k — 1).

PN(t,t,2) =
)

(10)

The expected value of t for the Gaussian
distribution N (t; f(7),2), can be represented by the
expression [26]:

(t) = [Nt f(), D)dt = f (7). (11)

It is known that the Kalman filter can be
applied to any dynamic system represented in the
form of a state space with additive Gaussian noises
in both equations, regardless of the presence of
nonlinearities. Although there may be a problem of
convergence with nonlinearity.

This approach allows us to construct a Gaussian
approximation to the posterior distribution
P(x(k|k)), with mean and covariance given by the
expressions given below:

PR(k|k) = Z(klk = 1) +K(Olz() — ),
2(klk — 1)),

P**(k|k) = P*(k|k — 1) — K(k)P?*K (k), (13)

where the optimal filter coefficient is calculated
using the expression:

K(k) = P**(k|k — D)[P#(k|k — 1)]"L. (14)

The only approximation used in the above
expressions is that of noise modelling using additive
Gaussian sequences. Calculation of estimates of the
state vector X(k|k), and covariance, P**(k|k), is
performed without approximation.

However, the practical implementation of the
considered filter requires procedures for calculating
integrals in equations that have the following form:

[ = [ g(x)N(x; %, P**)dx. (15)

Here, N(x;X,P**) is a multidimensional
Gaussian distribution with a vector of means X and
a covariance matrix P** . There are three
approximations for calculating the integral (15),
considered in [27]. One of them can be chosen for a
specific practical implementation.

Probabilistic filtering. The problem of linear
and nonlinear probabilistic filtering is to compute a
probabilistic inference about the state of the system
using available measurements. In Bayesian data
analysis, this is done by approximating the posterior
distribution of the state vector using all available
measurement information and estimates of the
unmeasured components. Since the probability
distribution function contains all the available
information about the studied states of the system
(processes), its assessment is a complete solution to
the problem of assessing the state and forecasting its
future development [26].

As examples of probabilistic filters, Figure 1
shows three filters: an unscented Kalman filter, a
point mass filter, and a granular filter.

The implementation of the unscented Kalman
filter (U-filter or UKF)) is based on the principle that
a set of discrete measurements can be used to
estimate the mean of the data. The initial data
distribution can be transformed into any other
required to solve a particular problem statement by
applying a nonlinear transformation to each
dimension. The mean and covariance of the new
distribution are the sought estimates needed by the
filtering algorithm. Unlike the EKF, in which a
nonlinear function (model) is approximated by a
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linear one, the main advantage of this approach is
the use of an available nonlinear function
representing the data model. This means that there is
no need to apply a linearization procedure based on
the differentiation of a nonlinear function. This
improves the quality of the estimates at the filter
output, and also simplifies the filter implementation
procedure due to the fact that the construction and
implementation of the corresponding Jacobi matrix
is excluded. Such a state estimation algorithm
generates output data equivalent in quality to the
optimal Kalman filter results for linear systems. But
the advantage of this approach is that the filter is
applied to nonlinear systems without applying the
linearization procedure necessary to implement the
EKF. It is analytically shown that the quality of
filtering in this case exceeds the quality of the EKF
and can be compared with the quality of the
Gaussian filter of the second order [28, 29].

When applying a point mass filter (PMF), a
network of points is superimposed on the state
space, which is used to recursively estimate the
posterior distribution of states. This filtering
procedure is suitable for handling any nonlinear and
non-Gaussian processes and can represent almost
any posterior probability distribution with high
accuracy. The main disadvantage of PMF is the high
dimensionality of the distribution network in the
case of a high order of the state space. This filtering
procedure is used in ‘“non-standard” cases of
multidimensional distributions that require high-
quality data processing results.

One of the types of probabilistic Bayesian
filters is called particle filter (PF) (granular
filtering). The task to be solved by the filter is the
construction (approximation) of the posterior
probability density for the unknown states taking
into account the necessary measurements, i.e. the
estimate of P[x(k)|x(1:k)]. There are alternative
particle filtering algorithms based on pseudorandom
sequences generated by Monte Carlo methods to
estimate desired multivariate distributions [30].

An example of the implementation of a
recursive Bayesian filter. The implementation
method of the recursive Bayesian filter using Monte
Carlo pseudo-random sequence generation is
performed using the Sequential Importance
Sampling (SIS) algorithm. It is the basic algorithm
of particle filtering (granular filtering). The idea of
filtering is to represent the desired posterior
probability density as a sequence of random values
with appropriate weights, which is used to compute

the filtered estimates. With a significant increase in
the number of elements of the sequence, the
characteristic of the result of the Monte Carlo
program becomes equivalent to the functional
description for the posterior density, and the SIS
filter approaches the optimal Bayesian estimate.

Let {x'(1: k),w"(k)}livzs1 be a random measure
of the posterior density, P[x(1:k), z(1: k)], where
{xi(l:k),i =0,1,..,Ng } is a set of k steps of the
evolution trajectory for reference points (particles)
with individual normalized weight coefficients,
(wi(k),i = 0,1,...,Ns}, N, wi(k) = 1. Where Ny
is the number of particles that will be used to
estimate the state.

The posterior density at time k can be
represented as follows:

Plx(1:k)|z(1: k)]

Ng
~ Zwi(k)5 (x(1:k) 6
1

—xi(1:k)),

where 6(x) is Dirac's § — function, i.e.
P[xi(l: k)|z(1: k)] ~ wi(k).

Weighting factors are generated according to
the principle of importance sampling. The procedure
can be characterized as follows. Suppose it is desired
to generate a probability distribution, P(x) o m(x)
(the symbol “o«” stands for proportion), where
{x()} is a desired random process that cannot be
generated from its true distribution, but for which
the approximation 7 (x) can be calculated.

Let x!~P(x), i =0,...,Ns be realizations of
random variables that can be easily generated from
the Q(+), distribution, called the proposal density or
the importance density.

Then the weighted approximation of the desired
distribution P (+) looks like this:

Ng
P(x) ~ Z wi(k)5(x — xY),
i=1
where
a(x)
wt « -z
QxY)
is the normalized weighting factor for the i-th
particle.

)
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After calculating the ratio, the coefficients are
normalized to satisfy the condition: Z?/:sl wi(k) = 1.
If the realizations of the processes {xi(l:k)}
were generated from the distribution with the density
of the offer, Q[x(1: k)|z(1: k)], then the weighting
coefficients in equation (16) will be calculated as

follows :
i o Plx(1:K)|z(1:k)]

Qx(L:R)|z(1:K)] (18)

In the case of successive computations, at each
iteration of the generation procedure, a weighted
sample is generated that approximates the posterior
density P[x(1:k — 1)|z(1:k — 1)], and then a new
sample can be generated to approximate the density
Plx(1:k)|z(1: k)].

we u , W write:
If we use Bayes' theorem, we can write:

P(x(k)|z(1:k)) =
_ P()|x(k))P(x(k)|z(1:k — 1))
B P(z(k)|z(1:k — 1))

If the condition is fulfilled

Q(x(K)|x(1:k — 1), z(1:k)) = Q(x (k) |x(k —
1),z(k)),

that is, the density supply depends only on x(k — 1)
and z(k).

The following expression can be used for
repeated (recursive) evaluation of weighting factors
[30]:

wi(k) o« wi(k —
P(z(R)Ix (k)P () lx' (k= 1)
P(xt(R)|x (k—1),2(k))

0 (19)

The filtered posterior distribution can be
approximated as follows:

P(xlgk)|z(1:k)) ~
~ Z Wi (k)8 (k)
i=1

— xt(k)).

It should be emphasized that the weighting
coefficients, w'(k), must be normalized in such a
way that Z?El wi(k) = 1.

The selection of the proposed density is one of
the most important points in the particle filter design
procedure. Possible methods of its selection, as well
as their advantages and disadvantages, are
considered in [30].

(20)

Often, the prior distribution of the data is used
as the supply density:

Q (xUo)|xitk — 1),z(k))
= P (x(0)|xitk — 1))

In this case, the expression is simplified to the
form:

21)

w (k)oc w (k—1)P(z(k) |xi (k). (22
But such a choice of supply density cannot be
used to solve all problems.
Basic algorithm. The sequential importance
sampling algorithm is proposed as the basic one for
the granular filter.

The elements x*(1: 1), in the weighted sample

. 11Ns
at the first stage {xl(l: 1),N—} are generated
N

i=1
from the initial distribution P(x(1)). Since this
distribution is relevant, no adjustment of values is
required, and all weighting factors must have the
same values, ie.: w'(1) =1/Ng. If we have a
verified sample at step (k — 1), then the procedure
for generating a weighted sample at step & can be
represented by the pseudocode from Table 1.

For this and all subsequent filtering algorithms,
the posterior distribution is approximated using (20),
and the estimate of the conditional mathematical
expectation of the state, x(k), is determined as
follows:

Ng
200 = ) wioxi(e), (23)
i=1

Resampling  of particle  samples. The
implementation of the SIS filter often leads to the
problem of degeneracy of the weight coefficients,
when after a certain number of iterations all
coefficients, except one, take on small weights.

Since the dispersion of the weighting
coefficients increases over time, it is impossible to
avoid the phenomenon [26, 30]. This degeneracy is
caused by the fact that a significant part of the
calculations is spent on updating particles that
practically do not affect the approximated
distribution, P(x(k)|z(1: k)).

An approach to reducing the degeneracy effect
through the use of particle resembling is proposed.
The main idea of the algorithm is to remove particles
with a small weight and focus on particles with a
large weight.
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Table 1. Algorithms of granular filtering

Algorithm name

Algorithm pseudocode

Algorithm of Sequential
Sampling by Importance
(SIS). Base

Algorithm 1: SIS Particle Filter

[(xi k), wi(k)}s |= sTs [{xiCk — 1), witk — 1) Y25, z(k)]
FOR

— generate xi(k)~q (x(k)|xi(k - 1),z(k)).

— assign the particle xi(k) weight wi(k)
according to (28)
END FOR

Algorithm 2: Resampling Algorithm
% . NN . . .
[{x’ (k),wf(k),if}jjl]= RESAMPLE [{x!(k), w!(k), /}5,
Initialize distribution function (DF): c¢(1)=0
FOR i =2, Ng

END FOR

2 | Particle resampling algorithm

—i=i+1

END FOR

— Construct DF: c(i) =c(i—1)+wi(k)

Start DF from beginning:
Generate initial point: u(1)~U[0,Ng1].
FOR j =1,Ns

— Move along DF: u(j) =u(l)+Ns1(G—1)
— WHILE u(j) > c(i)

— END WHILE
— Assign new value: x/ (k) = xi(k)
— Assign weight: w/(k) = Ng?!

— Assign basic index:

i=1

i/=i

Sequential Importance END FOR
3 Sampling with Resampling

Filter (SISR)

END FOR

Algorithm 3:
[ G, wi()s = STR [ (), wi()}5, 2 (k)]
FOR i =1,Ns

— Generate x'(k)~p(x(k)|x'(k — 1))

— Compute wi(k) = p(z(k)|x'(k))

Compute total weight: t:Z?flw"(k)
FOR i=T,N;
— Normalize i-th weight: w'(k) =t *w!(k)

Perform resampling using algorithm 2
(Resampling Algorithm) :
— [0, wil), = 5, ]= rRESAMPLE [{x'(K),w'(K)}i2,

SIR Particle Filter

Source: compiled by the authors

At this stage, a new set of random values is
2k N
generated {x‘ (k)} s

i=1"’

distribution is used P(x(k)|z(1:k)) , which is
calculated using (20), thus

P{x" (k) = x/ (k)} = w/ (k).

an approximate discrete

The numbers generated in this way create a
sequence of independent identically distributed
random numbers from the distribution (20) with
weighting coefficients; w!(k) = 1/Ns. The numbers
generated in this way create a sequence of

independent identically distributed random numbers
from the distribution (20) with weighting
coefficients; wi(k) = 1/Ng.

The pseudocode of the proposed resampling
procedure is given in Table 1. The procedure is
computationally simple point of view, and also
provides for saving the indices of each element of
the new sample, due to the use of the index from the
previous sample for further use.

The procedure has a number of disadvantages:
it reduces the possibilities for parallel calculations;
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particles with a large weight can be used repeatedly.
This is called impoverishment of the sample, and
then all the particles can converge into one particle
in a few iterations.

Sequential  importance  sampling — with
resampling filter (SISR). A Monte Carlo procedure
is proposed that can be used to solve the problems of
recursive Bayesian filtering. The procedure has
practically no restrictions on its application.

The functions f(-,7) and h(:,") in (1) and (2)
must be known; it should also be possible to
generate pseudo-random sequences of the noise
distribution, P(v(k - 1)), and the prior distribution,
P(x(k)|x(k — 1)), as well as determine the value of
the density distribution P(z(k)|x(k)), at certain
points with an accuracy of at least up to a common
constant.

The SISR algorithm was obtained from the SIS
algorithm with the appropriate selection of the
following elements:

o the supply density,

Q (x(k) xt(k — 1), Z(k)), can be replaced by the
prior distribution, P (x(k) xt(k — 1));

e a resampling step is performed at each time
point.

This choice of supply density proves the
necessity of selecting implementations from

P (x(k) xi(k — 1)).

The implementation of x‘(k)~P(x(k)|x(k —
1)) can be done by first generating noise and then
computing x'(k) = f (xi(k - 1), vi(k — 1)).

For this particular choice of supply density, the
weight update expression takes the form (22). Given
that resampling is carried out at each moment of
time, we have w'(k — 1) = 1/Ng Vi, and then

wilk) o P (z()|x'(k)). (24)
The weights specified in (24) are normalized

before the resampling phase. The pseudocode of the
algorithm is given in Table 1.

DEVELOPMENT OF THE
ARCHITECTURE OF THE INFORMATION
ANALYTIC SYSTEM

To solve forecasting problems, the architecture
of the information-analytical system is proposed
(Fig. 2). The system consists of the following main
components: user interface, information storage
subsystem, data analysis and preprocessing

subsystem, modeling subsystem, forecast
construction and evaluation subsystem, visualization
subsystem.

The information storage subsystem contains the
necessary computational procedures, sets of models
and forecast quality criteria, statistical data, and
relevant expert assessments. The data and
knowledge required for their further processing are
collected and stored in a database and knowledge
base (DKB).

The subsystem of data analysis and preliminary
processing consists of the following components: a
unit of analysis and evaluation of probabilistic
statistical information and a unit of data filtering. In
turn, the analysis block provides the following data
pre-processing procedures: identification and filling
in of gaps in data, detection of anomalous values and
their processing, identification of nonlinearities,
non-stationarity of data and their types,
normalization of data. Because different types of
filters produce different effects on the data, they are
best applied to combined statistical data filtering
procedures capable of producing the desired
smoothing  effects. The information-analytic
forecasting system uses a block of combined
filtering based on digital, optimal and probabilistic
Bayesian filters.

The simulation subsystem consists of a
procedure for dividing the data set prepared for
simulation into two samples (training and test) and a
simulation block. The modelling block involves the
development of basic alternative forecast models
and their quality assessment based on a set of
criteria.

The subsystem for building and evaluating
forecasts consists of a block for building forecasts
based on basic models, a block for combining
forecasts, a block for ensemble learning, and a block
for assessing the quality of forecasts based on a set
of quality metrics. The functional capabilities of the
system are easily modified and expanded thanks to
the block design of the system. Blocks for
combining forecast values and ensemble learning are
provided in the forecasting subsystem for the
opportunity to improve the quality of forecast values
of basic models.

The visualization subsystem is designed to
visualize the performance of each subsystem and
make quick decisions at each step of data
processing.
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results based on the best
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S S |

Fig. 2. The architecture of the information-analytic forecasting system
Source: compiled by the authors

Example. As an example of forecasting based
on the systematic use of non-linear filtering
methods, the task of forecasting the prices of Google
shares is considered. A data set is loaded into the
information storage system, which contains
information about the value of the company in the
period from January 1, 2016 to May 26, 2019. These
data were collected from the site
https://finance.yahoo.com/.

After loading in the analysis subsystem and pre-
preparation of the data, the analysis of the structure
and types of the data was first performed, and the
missing values were processed. The data is
characterized by irregular  registration  of
observations, which leads to a large number of
missing values and masking of possible seasonal

fluctuations. This makes the forecasting task quite
difficult. Kalman smoothing was used to restore
gaps in the time series [31, 32]. Using a set of
statistical tests (ADF, KPSS, PP), the original series
was checked for stationarity. The result of the
verification was a conclusion about the non-
stationarity of the process, which is reflected by the
set of observed time series values. No stationarity of
the process is confirmed by the nature of the values
of the sample autocorrelation functions ACF and
PACEF. Visual analysis of the data made it possible
to decide on the choice of modeling method. First of
all, one should take into account the dominant role
of the trend present in the data, which represents
non-linear and non-stationary behavior. There are
also templates that reflect the seasonal behavior of
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the data to be reflected in the models. However, the
degree of their influence is much smaller. To
implement the filtering procedure, various types of
nonlinear filters from the filtering block were used.
ARIMA statistical models, the method of fitting
generalized additive models (GAM), Bayesian
structural time series models (BSTS) [33] and
forward propagation artificial neural networks
(NNAR) are used in the modeling block as basic

forecasting models. These methods were chosen
because of their ability to recognize complex
patterns in time series.

Table 2, Table 3 and Table 4 show a
comparison of the results of the quality assessment
of basic models and forecast values without
application and with various options for applying
filters.

Table 2. The quality of models and forecasts without the use of a filtering unit

Model quality Forecast quality
Model type 2
P g2 | 2¢ (&) | pw | MSE | MAE | MAPE | Theil
ARIMA (0,1,0)(2,0,0); 0.99 25487.25 2.18 67.93 62.57 5.19 0.047
GAM (annual and weekly seasonal | g9 | 2665577 | 221 | 87.02 | 83.88 6.13 0.052
components)
BSTS (the component of the linear
local trend + the component of the 0.99 25391.39 2.13 42.81 40.56 4.27 0.033
autoregressive process)
NNAR (n=10, Sigmoid, maxit=5000) 0.99 25088.74 | 2.11 37.29 32.72 3.99 0.026
Source: compiled by the authors
Table 3. Quality of models and forecasts using digital filtering
Model quality Forecast quality
Model type 2
P g2 | 2¢(K) | pw | MSE | MAE | MAPE | Theil
ARIMA (0,1,0)(2,0,0)7 0.99 23355.54 2.10 65.01 60.73 4.54 0.045
GAM (annual and weekly seasonal | g 99 | 2413315 | 208 | 8520 | 7934 | 5.06 0.048
components)
BSTS (the component of the linear
local trend + the component of the | 0.99 23861.65 2.07 38.15 36.11 3.79 0.030
autoregressive process)
NNAR (n=10, Sigmoid, maxit=5000) 0.99 21887.54 2.05 33.35 29.52 3.04 0.021
Source: compiled by the authors
Table 4. Quality of models and forecasts with systematic application of
nonlinear filtering methods
Model quality Forecast quality
Model type 2
P R2 | 2¢() | pw | MSE | MAE | MAPE | Theil
ARIMA (0,1,0)(2,0,0) 0.99 24453.1 2.12 62.80 57.65 4.09 0.037
GAM (annual and weekly seasonal | o g9 | 433517 | 2.13 | 8345 | 76.12 | 4.88 0.035
components)
BSTS (the component of the linear
local trend + the component of the | 0.99 25061.08 2.10 34.07 30.75 3.27 0.029
autoregressive process)
NNAR (n=10, Sigmoid, maxit=5000) 0.99 23881.14 2.07 29.24 23.13 2.71 0.019

Source: compiled by the authors
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Fig. 3. Scheme of the method of improving the quality of forecast values
Source: compiled by the authors

The digital filter is used in the form of
exponential smoothing based on the Holt and Holt-
Winters methods, due to the presence of trend and
seasonality in the data. The filter prepares the data to
build the state space model that is needed to apply
the optimal filters. An extended Kalman filter of the
first order is implemented as an optimal filter. The
evaluation of the process, which is made by EKF, is
used to build an acceptable model of dispersion
dynamics. The probabilistic filter generates a
predictive variance distribution that is needed to
estimate the predictive values. A granular filter with
a basic sequential importance sampling (SIS)
algorithm was used as a probabilistic filter. The
combination of filters in the filtering unit was
selected experimentally. Filter parameters were
determined experimentally. From the above results,
it can be concluded that the systematic use of
nonlinear filtering methods significantly improves
the quality indicators of basic models.

To improve the quality of forecasting on the
basis of prepared data and on the basis of nonlinear
filtering methods, the method [34] was applied to
solve the forecasting problem, the structural diagram
of which is presented in Fig. 3. The first stage of the
method is the process of analysis and preprocessing
of the data set. At this stage, the following
procedures are implemented: detection and
processing of gaps in the data set, detection of
anomalies, checking for non-linearity, non-
stationarity and their consideration, filtering and
smoothing of data, etc. After this stage, the primary

data set is completely prepared for the modeling
process. At the second stage, the data set is divided
into two parts: training and test. The next step of the
modeling stage is the construction of basic
predictive models. The base models are built on the
basis of selected methods.

They are checked for adequacy using quality
metrics, the values of which are transferred to the
model evaluation results block. Preliminary
forecasts are formed from the basic models at the
forecasting stage. Assessments of the quality of
models are the basis for the formation of weighting
factors when combining forecasts. The final stage of
the methodology is the stage of combining, at which
the method of combining is determined and its
effectiveness is determined. If an improvement in
forecast accuracy is not found, it is necessary to
return to the stage of forming basic models, or to
change their number and type of combination. Such
a structural scheme fully corresponds to the process
of building combined forecasts for time series based
on simple averaging of forecasts, weighted
combination of forecasts and regression [33]. To
increase the accuracy of the combined forecast, the
forecasting procedure is performed on the models
with close variance values. The GAM and ARIMA
models have variance values that are significantly
different from the variance of the other two models.
Therefore, these models were not considered in the
next iteration of combining forecasts. Table 5 shows
a comparison of the forecast scores for the Google
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time series for the BSTS model, NNAR, and the
combined model.

Table 5. Comparison of estimates of forecasting
results for time series Google

Model RMSE | MAE | MAPE | Theil
BSTS 34.07 | 30.75 3.28 0.027
NNAR 29.24 | 23.13 2.95 0.019
Combination | 27.24 | 21.13 2.71 0.017

Source: compiled by the authors

-5 ol

Fig. 4. Results of time series forecasting using a

combined model
Source: compiled by the authors

From the analysis of the table, it follows that the
combined forecast model exhibits the best quality
indicators compared to the base models. A graphical
representation of the prediction results using the
combined model is shown in Fig. 4. The 80 % and 95 %
prediction intervals for each component and their
combination are shown. The figure shows only the
forecast part.

CONCLUSIONS

The study investigated the systematic use of
nonlinear data filtering methods in the problems of

intelligent data analysis and machine learning. The
analysis of modern methods of digital, optimal and
probabilistic nonlinear filtering of statistical data and the
peculiarities of their application in solving the problems
of evaluating the states of dynamic systems is carried out.
The application of the Kalman filter and its modifications
for solving nonlinear filtering problems is analyzed. The
classification of nonlinear filtering methods is presented.
The basis of the classification is digital, optimal and
probabilistic filters. Non-recursive and recursive digital
filters are studied. The formulation of the problem of
optimal filtering based on the Kalman filter is considered.
The filtering equation for a free dynamic system based on
the state space model of a discrete system is given. The
extended Kalman filter and its modifications are
considered. The Bayesian method of estimating the state
of a nonlinear stochastic system is presented. The
problem of linear and nonlinear probabilistic filtering is
considered. Three filters are considered as examples of
probabilistic filters: an unscented Kalman filter, a point
mass filter, and a granular filter. The granular filtering
algorithm and its modifications are considered in detail.
The architecture of the information-analytical system for
solving forecasting problems has been developed. As an
example of forecasting non-stationary process based on
the systematic use of non-linear filtering methods, the
task of forecasting the prices of Google shares is
considered. A comparison of the quality assessment
results of basic models and forecast values without
filtering and with different options for applying filters was
carried out. To improve the quality of forecasting based
on prepared data and based on nonlinear filtering
methods, a method based on combined forecasts was used
to solve the forecasting problem. The systematic use of
non-linear filtering methods increases the efficiency of
data preparation when solving the problems of intelligent
data analysis and machine learning.
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AHOTALIS

VY craTTi OMMCaHO MiAXiM IO CHCTEMHOTO BUKOPHCTAHHS METOJIB HENiHIIHOT QimbTpamii JaHNX B 33Ja4ax iHTEIEKTYAILHOTO
aHaJi3y JaHUX Ta MALIMHHOTO HaBYaHHsI. Po3risgHyTO MOHATTA QinbTpamii Ta HemiHiiHOI QimpTpanii. [IpoBeneHo aHaM3 CydacHHX
METO/IIB ONTHMAJILHOT Ta HMOBIPHICHOT HENIHIHHUX (iNbTpaniii CTaTHCTHYHUX JAaHUX M 0COOIMBOCTI iX 3aCTOCYBaHHS B O3B’ sI3aHHI
3aJa4 OI[IHIOBaHHS CTaHIB JUHAMIYHUX cucTeM. [IpoaHanmizoBaHO 3acTocyBaHHA O¢uTbTpa KanmaHa Ta HOro pisHOBHIIB IS
BUpINICHHS 3agad HemiHiiiHO1 ¢inbTpanii. HaBemeno ximacudikamito MeToniB HemiHiiHOI ¢imbTpamii. OcHOBY Kiacudikamii
CKJIQAoTh IUGPOBI, ONTHMambHI Ta IMOBIipHICHI (iNETpH. [lOCHIKEHO HEPEeKYpCHBHI Ta pEeKypcHBHI IH(MPOBI (imbTpu.
Po3risHyTO MOCTaHOBKA 33a1a4i ONTHMAIBHOI (iIbTparii Ha ocHOBI ¢inbTpa Kanmana. [IpuBeneno piBHsSHHS QinbTpanii 11 BUTEHOT
IUHAMIYHOI CHCTEMH, 3aCHOBaHE Ha MOJIEIN MPOCTOPY CTaHIiB AWCKPETHOI cucTeMH. PosrmsHyTo posmmpenuit ¢pinetp Kammana i
ioro monudikamii. [IpencraBneno OaifeciBCbKHN METOA OLIHKH CTaHY HEJNiHIMHOI cTOXacTHYHOI cucTeMH. Po3rimsiHyTo mpobiema
NiHIHHOT Ta HemiHifHHOI iMoBipHiCHOI dinbTpanii. B skocTi nmpuknaxiB HMOBIPHICHUX (IIBTPIB PO3IITHYTO TPH (GiabTpa: GLIBTP
Kanmana 6e3 3amaxy, QiuIbTp TOUKOBOI MacH Ta rpaHy BSIpHUN QinbTp. JeTaapHO PO3TILIHYTO ATOPUTM TPaHyIApHOI (QimpTpamii Ta
itoro moaudikamii. PozpobieHo apxiTekTypy iHQopManifHO aHATITUYHOI CHCTEMH [UIs BUPIMICHHS 3a1ad MporHosyBaHHs. Cucrema
CKJIQJIA€ThCsl 3 HACTYIMHHX OCHOBHMX KOMITOHEHTIB: iHTep(elc KopucTyBada, migcucreMa 30epiraHs indopmamii, mizcucrema
aHaJi3y Ta momepenHboi 0OpoOKM MaHUX, MiICHCTEMa MOJENIOBAHHSA, HiJCHCTeMa MOOYIOBH Ta OIHKH IPOTHO3IB, MiJcCHCTEMa
Bisyamizamii. B sikocTi mpuKiIagy mporHO3yBaHHS Ha OCHOBI CHCTEMHOTO BUKOPHCTAHHS METOJIB HENiHiIHOT (inbTpamnii po3risHyTo
3aBaHHS NIPOTHO3YBAaHHS IiH akuiii komnaHii Google. IIpoBeneHO MOPIBHSHHSA pPe3ysIbTaTiB OLHIOBAHHS SKOCTiI 0Aa30BUX MoJeiei
Ta MPOTHO3HUX 3HaueHb 0e3 (QimpTpaLii Ta 3 pi3SHUMH BapiaHTaMHU 3acTOCYBaHHA (PimbTpiB. [ MOKpameHHs AKOCTI MPOTHO3YBaHHS
Ha MiATOTOBJICHUX AaHUX Ta HA OCHOBI METOJIIB HENiHIHOT QibTpamnii A7 BUpIMICHHS 3a1a4i IPOTHO3YBAaHHS 3aCTOCOBAHO METO Ha
OCHOBI KOMOIHOBaHHX IPOTHO3iB. [IpecTaBeHo pe3yabTaTH MIPOTHO3YBaHHS 3 BUKOPUCTAHHIM KOMOIHOBaHOT MOJEII.

KarwouoBi cioBa: weniniiina dinprparis; ontumanshuit Ginetp Kanmana, posmupenuit ¢pinetp Kanmana; #MoBipHicHMIA
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