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ABSTRACT 

 
Three main approaches to building computer systems are analyzed and allocated: software, hardware, and problem-oriented. A 

problem-oriented approach was chosen for the implementation of CNN. This approach uses a processor core with hardware 

accelerators that implement basic CNN operations. The development of computer systems for the implementation of CNN should be 

carried out based on an integrated approach. This approach includes a modern element base, existing hardware, and software for the 

implementation of the CNN; methods and algorithms for the implementation of CNN; methods, algorithms, and VLSI structure for 

the implementation of basic operations of the CNN; methods and means of computer-aided design of hardware and software focused 

on the implementation of CNN computer systems. For the development of computer systems for the implementation of CNN chosen 

approach, which includes: variable composition of equipment; use of the basis of elementary arithmetic operations; organization of 

the process of calculating the scalar product as execution single operation; pipeline and spatial parallelism; localization and 

simplification of links between the steps of the conveyor; coordination of the time of formation of input data and weighting 

coefficients with the duration of the conveyor cycle. It is shown that in order to reduce the processing time of large images, it is most 

expedient to use parallel-stream VLSI -implementation of basic operations. The modified Booth algorithm for forming partial 

products in a parallel-threaded computing device is selected, which decreased the number of steps in the pipeline. The method of 

group summation has been improved, which, with multi-input single-digit adders, combined according to the principle of the Wallace 

tree, provides a reduction in summation time. The method of parallel-flow calculation of scalar product in a sliding window is 

developed, which, by coordinating the time of receipt of columns of input data and weighting coefficients with the duration of the 

conveyor cycle, provides high efficiency of equipment use and calculations in real-time. The main ways regarding coordination of 

the time of receipt of input data columns and weighting coefficients with the duration of the conveyor stroke of hardware that 

implement two-dimensional convolution are determined. The hardware structure for the realization of two-dimensional convolution 

in a sliding window, which is focused on VLSI- implementation with high efficiency of equipment use, has been developed. 

Programmable logic integrated circuits selected for the implementation of hardware accelerators. Single-bit 7, 15, and 31 input 

adders were developed and modeled on the basis of FPGA EP3C16F484 of the Cyclone III family of Altera company, and an 8-input 

7-bit adder was synthesized on their basis. 

Keywords: Convolutional neural networks; hardware accelerator;  problem-oriented approach;  parallel-stream 

implementation;  multi-input adder;  scalar product;  two-dimensional convolution 
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INTRODUCTION 

Convolutional neural networks (CNN) are a  

class of deep artificial neural networks of direct 

spreading, which is focused on effective image 

recognition and video analysis. The CNN consists of 

layers of input, output and a number of  hidden 

layers (convolutional, aggregative, fully connected 

and normalization). The main layer of CNN is the 

convolution layer, which is the basis of the network 

[1, 2]. The parameters of the convolution layer 

consist of filters set for training.  
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Each filter has small parameters (width and 

length) and runs through the entire input image. 

During the passage, each filter slides along the width 

and length of the input data and calculates the scalar    

product between the values of the filter parameters 

and the values of the image parameters. As the filter 

passes through the width and length of the image, a 

two-dimensional activation map is compiled, which 

provides a response of this filter at each spatial 

position. 

Algorithms of CNN can be implemented by 

software or hardware. Each of the means of 

implementing CNN has its advantages and 

disadvantages.  
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The advantages of software implementation are 

flexibility in replacing and modifying algorithms, and 

the main disadvantage is low speed. The advantages 

of the hardware implementation of the CNN 

algorithms are high speed, which is achieved due to 

the specialization and parallelization of processing. 

Hardware implementation is used in the case when 

the algorithms are fully worked out and they will not 

change during operation. The disadvantages of this 

implementation are the complexity of modifying and 

changing processing algorithms and high hardware 

costs. The implementation of CNN using only one of 

these tools is rare. Mainly for the implementation of 

CNN used problem-oriented approach, which 

involves a combination of software and hardware. 

The process of combining software (universal) and 

hardware (specialized) provides high efficiency of 

equipment use and reduces the implementation time 

of the CNN. With this approach, the implementation 

of the CNN with the specified technical parameters is 

reduced to supplementing the processor core with the 

necessary hardware accelerators that implement basic 

time list operations of the CNN. Such operations 

include calculating the scalar product in the sliding 

filter (two-dimensional convolution) with the window 

size m×m pixels. 

1. ANALYSIS OF LITERARY DATA AND 

PROBLEM STATEMENT 

Analysis of approaches to the construction of 

computer systems focused on the implementation of 

CNN [1, 2], [3] showed that from the set of existing 

approaches can be distinguished the following: 

• the first is a software implementation based 

on a neurosignal processor, digital signal processing 

processor, SoC system-on-chip or general-purpose 

processor; 

• the second – hardware implementation in the 

form of specialized systems, the architecture and 

organization of the computing process in which 

reflects the structure of algorithms for the 

implementation of the CNN; 

• the third is a problem-oriented 

implementation using a processor core supplemented 

by hardware accelerators that implement basic CNN 

operations. 

The disadvantages of the first approach are low 

speed, functional and structural redundancy of 

computer tools [4, 5], [6]. The disadvantage of the 

second approach is the greater hardware complexity 

[7, 8]. The third approach provides high efficiency 

of equipment use and adaptation to the requirements 

of a particular application [9, 10].  

Analysis of the element base in hardware 

accelerators CNN shows that for their 

implementation it is advisable to use systems on a 

chip SoC and programmable logic integrated circuits 

such as FPGA.  

The characteristics of the hardware accelerator 

for calculating two-dimensional convolution largely 

depend on approaches to the hardware 

implementation of the scalar product calculation 

operation. Analysis of work [2, 5] shows that there 

are two approaches to the hardware implementation 

of the operation calculating scalar products. The first 

of them is based on multiplication and addition 

operations, and the second is based on elementary 

arithmetic operations of addition, inversion and 

shift. The first approach is mainly used to calculate 

the scalar product as a set of multiplication and 

addition operations. This approach does not provide 

optimization of the device structure and its time 

parameters. Using the basis of elementary arithmetic 

operations and the multi-operation approach 

optimizes structure of device in terms of speed and 

hardware costs. The basis of algorithms for 

calculating the scalar product using the multi-

operand approach and the basis of elementary 

arithmetic operations is the formation of partial 

products with their subsequent addition. 

The analysis of device structures [5, 12], [13], 

which are used to implement algorithms for 

calculating scalar and basis elementary arithmetic 

operations showed that two types of structures are 

used for implementation: recursive and non-

recursive. A structural feature of recursive devices is 

the presence of inverse relationships. In such 

devices, the calculation of the scalar product is 

carried out in several iterations, the number of which 

is determined by the algorithm for forming partial 

products. The disadvantage of recursive devices for 

calculating the scalar product is relatively low speed. 

Non-recursive devices have greater speed, a 

feature of which is the absence of inverse 

connections.  

Such devices are divided into two classes:  

– the first is matrix, which uses parallel 

formation and summation of all partial products; 

– the parallel-thread approach is parallel-

streaming, which uses sequential formation and 

addition with the corresponding offset of partial 

products.  

The disadvantage of matrix devices for 

calculating the scalar product is the heterogeneity of 

the structure. Parallel-stream devices for calculating 

the scalar product have a homogeneous structure 



Tsmots I. G., Berezsky   O. M., Berezkyy M. O.   /   Applied Aspects of Information Technology        

                                                                                                  2023; Vol.6 No.1: 13–27 

ISSN 2617-4316 (Print)                                   
ISSN 2663-7723 (Online) 

Information systems and technology 15 

 

with regular couplings and are more focused on 

VLSI implementation. 

From the analysis of the literature [5, 14], [15] 

it follows that the speed of parallel-stream devices 

for calculating the scalar product largely depends on 

the speed of implementation of group summation of 

operands.  

In [5, 16], [17] the horizontal model of group 

summation, which has a relatively low speed, is 

considered.  

In articles [18, 19], [20-27] hardware 

accelerators for CNN based on FPGAs. The problem 

of improving FPGA-components developed for 

critical application systems is discussed in articles 

[28, 29]. Applied aspects of the application of deep 

neural networks are analyzed in [30]. 

Consequently, the analysis of literature data 

showed that the development of highly efficient 

hardware accelerators for the implementation of 

two-dimensional convolution requires the 

improvement of the method of group summation, the 

development of a new method and structure of 

parallel-flow calculation of the scalar product in a 

sliding window. 

Therefore, the actual problem is the 

development of a problem-oriented computer system 

for the effective implementation of the CNN main 

operations. 

GOAL AND RESEARCH OBJECTIVES 

The purpose of the research. The purpose of 

the research is to develop a method, algorithms and 

structures to increase the efficiency of equipment 

use in the hardware implementation of two-

dimensional convolution in a sliding window. 

The objectives of the research are as follows: 

analysis of literary data; principles selection of 

construction and development of the computer system 

basic structure focused on the implementation of 

CNN; development of methods and algorithms for the 

implementation of two-dimensional convolution for 

the hardware accelerator of the CNN; development of 

the structure of a parallel-flow device for calculating 

the scalar product; development of the structure of 

hardware for the implementation of two-dimensional 

convolution; implementation of a multi-input adder 

on FPGA. 

The object of research is the processes of 

parallel-stream calculation of two-dimensional 

convolution in a sliding window. 

The subject of research are methods, 

algorithms and structures of hardware components 

for calculating two-dimensional convolution in a 

sliding window. 

2. MAIN RESEARCH 

 RESULTS  

2.1. Basic structure of a computer system 

based on an integrated approach 

The development of computer systems focused 

on the implementation of CNN was carried out 

based on the integrated approach, which covers: 

• modern element base, existing hardware and 

software for the implementation of CNN; 

• methods and algorithms for the 

implementation of CNN; 

• methods, algorithms and VLSI structures for 

the implementation of basic CNN operations; 

• methods and tools for computer-aided 

design of hardware and software focused on the 

implementation of CNN computer systems. 

The development of computer systems and 

hardware accelerators for the implementation of 

complex basic operations of the CNN is based on 

[5]: 

• variable composition of equipment, which 

provides for the presence of a processor core and 

replaceable hardware modules that implement basic 

CNN operations with great computational 

complexity; 

• modularity, which involves the development 

of hardware accelerators in the form of modules that 

have access to a standard interface; 

• use of the basis of elementary arithmetic 

operations for VLSI-implementation of basic 

operations of CNN; 

• organization of the calculating process in 

scalar product as a single operation; 

• pipeline and spatial parallelism in the 

implementation of CNN and basic operations; 

•  of the conveyor steps in the implementation 

of the scalar product; 

• localization and simplification of links 

between conveyor steps;  

• ensuring a balance between input-output and 

calculations; 

• minimization of the external communication 

interface. 

The basic structure of a computer system 

focused on the implementation of CNN is presented 

in the form of a constant particle – processor core 

and variable part – hardware accelerators that 

implement complex basic operations of the CNN [3, 

5]. The basic structure of a computer system focused 

on the implementation of CNN is shown in Fig. 1.  

The symbols are as follows: MPM – multiport 

memory; BO is a basic operation. 
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Fig. 1. The basic structure of a computer system focused on the implementation of CNN 
Source: compiled by the authors 

 

The main components of a computer system are 

the processor core, a set of hardware accelerators 

that hardware-implement control algorithms for BO 

implementing CNN and MPM.  

The processor core is designed to control the 

computational process and implement parts of the 

CNN algorithms in which logical operations and 

heterogeneous calculations prevail. Such a core can 

be implemented on the basis of a neural signal 

processor, digital signal processing processor, 

system-on-chip SoC or general-purpose processor. 

In a computer system, MPM is used to reduce 

time and synchronize the exchange between the 

processor core and hardware accelerators. The use of 

MPM provides: conflict-free data exchange, high 

speed transfer of data, the ability to change the width 

and time of memory access, work with different 

speed hardware accelerators and the ability to 

simultaneously connect the necessary hardware 

accelerators. The peculiarity of MPM is independent 

sets of address and data that come from the 

processor core and hardware accelerators.  

2.2. Method and algorithms of two-

dimensional convolution for the hardware 

accelerator CNN 

The initial information for the development of a 

hardware accelerator to perform the operation of 

calculating a two-dimensional convolution is:  

• image size; 

• the size of the filter window;  

• intensity of input data and weights; 

• interface requirements;  

• bit depth of input data, weights and accuracy 

of calculations; 

• technical and economic requirements and 

restrictions. 

In parallel-flow structures, data is processed 

according to the pipeline principle [5]. Pipelining 

involves dividing structures into steps, each of 

which consists of two blocks – operational and 

buffer memory. Management of parallel-stream 

means is reduced to the issuance of clock pulses that 

move data from input to output, writing intermediate 

results to buffer memory. The frequency of receipt 

of clock pulses is determined by the time of melting 

to the buffer memory and the delay time at the 

operating unit.  
In parallel-stream calculation of two-

dimensional convolution in a sliding filter with a 

window of m×m pixels, the input data (pixels) Xkj 

and the weights Wkj (j = 1, ..., m; k = 1, ..., m) come 

simultaneously to all inputs in parallel binary code 

with a fixed point. 

The calculation of such a two-dimensional 

convolution reduces to the calculation of the scalar 

product for the jth input column:  


=

=
m

j
kjkjk XWZ

1

,                       (1) 

and summing in the sliding window m the results of 

calculating the scalar product according to the 

formula: 


=

=
m

k
kZY

1

.                           (2) 
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To implement a hardware accelerator, it is 

necessary to develop algorithms for parallel-stream 

calculation of the scalar product and group 

summation. 

2.2.1. Method and algorithms of parallel-stream 

calculation of scalar product 

For a parallel-stream VLS implementation, the 

parallel-thread calculation algorithm of the scalar 

product must be structured, recursive, and locally 

dependent. 

The parallel-stream calculation of the scalar 

product must be performed on the basis of 

operations of the same type, which reduces to the 

formation of macroparticle products PMh and their 

addition to previously accumulated amounts in 

accordance with the formula: 

Mhh
h

h PZZ += −
−

12 ,                  (3) 

where Z0=0. 

The operation of forming the macro partial 

product PMh and its addition according to the 

formula (3) are realized by h step of the pipeline. 

The number of steps of the pipeline is determined by 

the bit depth of the operands n and the number of 

digits k, which are analyzed to form macroparticle 

products PMh.  

The formation of the hth macro partial product 

PMh (h=1, …, r, where 






=

k

n
r ,    is the sign of 

rounding to a larger integer) is performed by 

summing the group partial products, which are 

obtained by analyzing k digits in accordance with 

the formula:  

1 ( 1)

1 2

1

( 2 2 )
m

k

Mh j jh j jh j jhk

j

P W X W X W X− − −

=

= + + + =
 

1

m

jh

j

P
=

= .                  (4) 

For parallel-stream calculation of the scalar 

product, it is advisable to use algorithms for 

analyzing lower digits to form partial products. The 

structure of the pipeline step depends on the number 

of analyzed bits k and algorithms for forming group 

partial products Pjh. Most often, a modified Booth 

algorithm is used to form partial products. 

Calculating the scalar product using the modified 

Booth algorithm to form partial products involves 

partitioning factors Xj on groups of three digits, so 

that neighboring groups have one common digit 

[5,17]. The division of factors Xj into groups is 

carried out from the lowest digits, and the lowest 

digit of the youngest group is always supplemented 

by zero.  

For each q group of bits (q=1, ..., r, 






=

k

n
r ) of 

factors Xj[2(r-q+1)-1] Xj[2(r-q+1)] Xj[2(r-q+1)+1], the partial 

product Pjq is formed according to the formula: 

Pjq=KjqWj.                           (5) 

The value of Kjq is defined as the sum of the 

weights of nonzero digits of the factor bit group 

[2( 1) 1]j r qX − + −  [2( 1)]j r qX − +  [2( 1) 1]j r qX − + + , where 

[2( 1) 1]j r qX − + −  has weight minus two, and [2( 1)]j r qX − +  

and [2( 1) 1]j r qX − + +  – unit, according to the expression: 

[2( 1) 1] [2( 1)] [2( 1) 1]

[2( 1) 1] [2( 1)] [2( 1) 1]

[2( 1) 1] [2( 1)] [2( 1) 1]

[2( 1) 1] [2( 1)

2,   if  0, 1,

1,   if  0, ,

0,   if  ,

1,   if  1,

j r q j r q j r q

j r q j r q j r q

jq j r q j r q j r q

j r q j r q

X X X

X X X

K X X X

X X

− + − − + − + +

− + − − + − + +

− + − − + − + +

− + − − +

= = =

= 

= = =

− = ] [2( 1) 1]

[2( 1) 1] [2( 1)] [2( 1) 1]

,

2,   if  1, 0.

j r q

j r q j r q j r q

X

X X X

− + +

− + − − + − + +









− = = =

 

(6) 

When forming partial products Pjq, the 

multiplication operation by two is realized by 

shifting one digit to the left and changing the sign by 

inversion of all digits of the multiplied followed by 

adding one to the lowest digit.  

After forming the partial products Pjq, the qth 

macropartial product is calculated using the 

following formula: 

1

m

Мq jq

j

P P
=

= .     (7) 

The calculation of the scalar product Z with the 

formation of partial products according to the 

modified Booth algorithm is performed according to 

the expression: 

.           (8) 

From the formulas (5-8) it can be seen that the 

algorithms for calculating the scalar product are 

reduced to performing the same type of operations - 

the formation of partial products Pjq, calculating the 

qth macropartial product PMq and adding to the 

previously accumulated sums shifted by two digits 

to the right. 

2.2.2. Group summation algorithm 

To implement the group summation operation, 

both horizontal and vertical models can be used. 

The horizontal model of group summation is 

implemented by the formula: 

1 1

2
m n

-i

ki

k i

Y Z
= =

= ,                      (9) 

Mqqq
PZZ +=

−

−

1

22
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where n is the bit depth of terms. 

In [5, 17] all possible options for implementing 

the horizontal model of group summation are 

considered. The fastest version of the 

implementation of the horizontal model of group 

summation is a parallel-parallel summation method, 

the graph of the algorithm of which is shown in  

Fig. 2. 

The parallel-parallel group summation 

algorithm is cascading. The time for calculating the 

sum of the macro-operation of group summation 

according to this algorithm depends on the height of 

the graph (number of tiers), which is calculated as 

follows: 

2logh m=    .        (10) 

In each tier, the operands are divided into pairs, 

for each of which a sum is calculated. 

The total number of addition operations to sum 

m numbers is equal to: 

1 1
2 4 8

m m m
U m= + + + + = − .    (11) 

The summation time can be reduced by using the 

vertical and multi-operand addition algorithm [17]. 

Replacing the summation order in formula (9), 

we proceed to the vertical model of group 

summation, which is written as follows: 

1 1

2
imn

i

ki

i k

Y Z−

= =

=  ,                   (12) 

where mі is the number of terms in the іth bit section. 

Existing vertical methods of group summation 

reduce the summation process to converting a multi-

row code to a single-row code. This transformation 

is based on the basic operation of converting a three-

line code to a two-row code, which is carried out 

using a layer of single-digit adders that have no 

connections with each other. To reduce the 

conversion time of a multi-row code into a single-

row layer, single-bit adders must be combined 

according to the principle of the Wallace tree.  

The number of single-bit adder layers to 

calculate the group summation operator is 

determined by the formula: 

1.5log 0,5K m=    .       (13) 

Group summation using this method is 

considered as performing a single operation where 

hyphenation units are counted only once at the stage 

of converting a two-line code to a single-line code. 

Acceleration of the converting process of a 

multi-row code to a single-row code is carried out by 

using the conversion of 3-, 7- and 15-input single-bit 

adders. 

The work of such adders is described by the 

following expressions: 

+

+

+ +

+

+ +

Y

1st tier 

2nd tier

  hth tier

1Z 2Z
3Z 4Z mZ1−mZ2−mZ3−mZ

 

Fig.  2. Graph of parallel group summation algorithm 
Source: compiled by the authors 
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where Е3–2, Е7–3 and Е15–4 are outputs of sums, re-
spectively, on three, seven and fifteen input single-
digit adders, Cji is the ith digit of the jth operand, Pi–1 
is the output of the (i-1)th digit of the transfer, Si is 
the output of the ith digit of the sum. To convert a 
multi-row code to a two-row code, the union of such 
adders is used according to the principle of the Wal-
lace tree. The conversion of a two-line code to a 
single-line code is performed using a parallel adder. 

2.3. The structure of the parallel-flow device for 

calculating the scalar product with the formation 
of partial products according to the modified 

Booth algorithm 

The structure of a parallel-thread device for 
calculating a scalar product with the formation of 

partial products according to the modified Booth 
algorithm should be focused on the VLSI 
implementation, involving the use of steps of the 
same type with local and regular connections. When 
developing the structure of the device, it is necessary 
to ensure a balance between I / O and calculations. 

The developed structure of the device of 

parallel-stream calculation of scalar product with 

formation of partial products according to the 

modified Booth algorithm is shown in Fig. 3.  

For this, the following notation is introduced: 

SC – step conveyor; Rg – register; Add – adder; 
mAd – m-input adder; Dec – decoder; BFPP – block 

of formation of partial products; Sw – switch [17]. 
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Fig. 3. The structure of the device for parallel-stream calculation of the scalar product with the 

formation of partial products according to the modified Booth algorithm 
Source: compiled by the authors 

The number of steps of the pipeline required for 

the synthesis of a parallel-flow device for calculating 

the scalar product is . In each step of the 

conveyor SKq the formation of partial products Pjq is 

performed by the partial product formation block 

using the analysis of three digits Xj[2(r-q+1)-1] Xj[2(r-q+1)] 

Xj[2(r-q+1)+1].. Bits Xj[2(r-q+1)-1] Xj[2(r-q+1)] Xj[2(r-q+1)+1] go to 

the inputs of the decoder. Using logic elements OR 

and signals from the outputs of the decoder, the 

formation of control signals of the switch – 10000 

(Xj[2(r-q+1)-1]=0, Xj[2(r-q+1)] Xj[2(r-q+1)+1]), 01000 (Xj[2(r-

q+1)-1]=0, Xj[2(r-q+1)]=Xj[2(r-q+1)+1] =1, 00100 (Xj[2(r-q+1)-

1]=1, Xj[2(r-q+1)] Xj[2(r-q+1)+1]), 00010 (Xj[2(r-q+1)-1]=1, 

Xj[2(r-q+1)]=Xj[2(r-q+1)+1]=0), і 00001 (Xj[2(r-q+1)-1]=Xj[2(r-

q+1)]=Xj[2(r-q+1)+1]). The switch, depending on the 

signals that come to the control inputs, is installed in 

the appropriate positions. When its output receives 

the value Wj (control signal – 10000), value 2Wj 

(control signal – 01000), value (-Wj) (control signal 

– 00100), value (-2Wj) (control signal – 00010), 

logical zero value (control signal – 00001). At the 

output of the fourth element OR a logical zero signal 

is generated (with control signals 10000, 01000, 

00001) or logical unit (with control signals 00100 

and 00010). The formed partial products are fed to 

the inputs of the N-input adder, at the output of 

which we obtain the macro-component product PMq. 

The calculated macro-master product PMq is added to 

the partial result Zq-1 shifted two digits to the right. 

The result of calculating the first scalar product 

is obtained at the output of the device after the rth 

cycle. In each subsequent cycle of work at the output 

of the device, we will obtain the results of 

calculating the following scalar products. 









=

2

n
r
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This device works with a beat, the duration of 
which is calculated by the formula: 

CSPT = tRg+ tDec+ tOR+tSw+tmAdd+ tAdd,        (14) 

where tRg is time of writing to the register; tDec is 
operation time of the decoder; tOR is delay time on 
the logical element OR; tSw is delay time of the 
switch; tmAdd is summation time m macroparticle 
products; tAdd is time of addition of two numbers. 

The costs of equipment for the implementation 
of this device are determined by the expression: 

WSP=r[N(2WRg + WSw + WDec + 4WOR) + 
+ WmAdd + WAdd + WRg], 

(15) 

where WRg, WSw, WOR, WmAdd, WAdd, WDec are 
equipment costs, respectively, for the register, 

switch, logical element OR; m – input adder, adder 
and decoder. 

2.4. The structure of hardware for the 
implementation of two-dimensional convolution 

The development of hardware for the 
implementation of two-dimensional convolution will 
be carried out on the basis of a device for parallel-
stream calculation of the scalar product with the 
formation of partial products according to the 
modified Booth algorithm. This algorithm is 
complemented by a data format converter and a 
summation block for scalar products in a sliding 
window. The developed structure of hardware for 
the implementation of two-dimensional convolution 
is shown in Fig. 4. 
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RgZ 2
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Y
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Fig.  4. The structure of hardware for the implementation of two-dimensional convolution 
Source: compiled by the authors 
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The symbols are as follows: CP1 is first clock 

pulses; CPC is clock pulses of the conveyor; FC 

format converter; SPCD is a device for calculating 

the scalar product; SPSB is summation block of 

scalar products. 

The developed hardware is focused on the 

pipelined parallel-flow implementation of two-

dimensional convolution. In parallel-stream 

calculation of two-dimensional convolution, each 

clock pulse CP1 in registers RgX1 and RgW1 of the 

FC format converter are written, respectively, the 

input data (pixel) Xj and the weight factor Wj. After 

m clock pulses CP1 in registers RgX1, ..., RgXm and 

RgW1, ..., RgWm are written respectively columns of 

input data and weighting coefficients. The 

accumulation time of the column of input data and 

weights in the FC equal to 
1c CPt mt= , where 

1CPt , is 

the period of clock pulses. Controlling the process of 

calculating two-dimensional convolution Y is 

reduced to the issuance of conveyor clock pulses 

CP1 that advance data from the SPCD input to 

output Y, writing intermediate results to buffer 

memory (registers).  

To ensure high efficiency of equipment use, all 

steps of the conveyor must perform approximately 

the same complexity of operations, and the time of 

entering the column of input data and weighting 

coefficients, the stroke of the conveyor and the 

output time of the results must be coordinated. The 

number of steps of the pipeline depends on the 

following parameters: bit depth of input data; the  

number of digits that are analyzed to form 

macroparticle products; the size of the sliding 

window. 

The results of calculating two-dimensional 

convolution after the initial delay are obtained at the 

output Y in each pipeline cycle. 

For effective hardware implementation of two-

dimensional convolution, it is necessary to ensure 

that the following conditions are met: 

c Ct T ,                     (16) 

where ТC is duration of the conveyor cycle. 

Conveyor cycle ТC the operation of the 

hardware for calculating two-dimensional 

convolution is determined by the beat 
CSPT  of the 

work of the SPCD (14). The duration of the 

conveyor cycle of the work TC mainly depends on 

the speed of the element base, the time tFPP of 

partial products formation and the time tmAdd 

summation of partial products that determine the 

complexity of operations in the pipeline step and 

their number. The main ways to reduce TC is to 

conveyor a multi-input adder by breaking it into 

steps. 

The choice of the variant of the hardware 

accelerator for calculating two-dimensional 

convolution in a sliding window is carried out 

according to the criterion of efficiency of use of 

equipment EUE, which considers the number of 

interface pins, homogeneity of structure, number and 

locality of connections. The efficiency criterion links 

performance with equipment costs and evaluates the 

elements (valves) of the component by performance 

[5, 15].  

The efficiency of equipment use is determined 

by the formula: 

1 2 3[( )( ) ]

TC
UE

TC SPCD FC SPSB Int

R
E

t W W W k k W k
=

+ + + +
, (17) 

where RTC is complexity of algorithms for 

calculating two-dimensional convolution, which is 

determined by the number of elementary arithmetic 

operations necessary for its implementation; tTC is 

time of calculation of two-dimensional convolution; 

WSPCD is equipment consumption on the device for 

calculating the scalar product; WFC is equipment 

costs for the implementation of the format converter; 

WSPSB is equipment costs for the implementation of 

the scalar product summation unit; WInt is hardware 

costs for interface implementation; k1 is coefficient 

of taking into account the homogeneity of the 

structure; k2 is coefficient of taking into account the 

number and locality of links; k3 is coefficient of 

taking into account the number of interface outputs. 

The cost of equipment for the hardware 

implementation of two-dimensional convolution is 

determined as follows: 

TC FC SPCD Rg m AddW W W mW W= + + + ,   (18) 

where WFC, WSPCD, WmAdd, WRg are equipment costs, 

respectively, on the format converter, the device for 

calculating the scalar product; m-input combiner and 

register. 

2.5. Multi-input adder on FPGA 
The most complex component of the developed 

hardware for implementing two-dimensional convolution 

is a multi-input adder. Based on the FPGA EP3C16F484 

family of Cyclone III family of Altera company, single-

bit 7, 15 and 31 input adders have been developed.  

Table 1 shows the hardware resources of FPGAs, 

which are required to implement single-bit 7, 15 and 31 

input adders. 

Table 1.  FPGA hardware resources 

for implementing single-bit multi-input adders 

Number of 

adder inputs 

Number of  

logical elements 
Number of pins 

7 20/15408 12/347 

15 106/15408 21/347 

31 369/15408 38/347 
Source: compiled by the authors 
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Based on the developed single-bit multi-input 

adders, an eight input seven-bit adder MSm was 

synthesized. Summation in such a multi-input MSm 

adder is performed using vertical and multi-operand 

approaches. Process summation is considered as the 

execution of a single operation based on multi-input 

single-digit addition operations.  

The summation of numbers in an 8-input 7-bit 

adder is performed in four stages by using the 

following transformations: 7-row code to 3-row, 3-

row code to 2-line code, and 2-row code to 1-row 

code. Multiinput adder MSm is shown in Fig.  5.  

The interface of the 8-in 7-bit adder consists of 

the Clk sync input, Reset adder reset input, W_X1 

inputs, ..., W_X8 and Out_Sm output(10...0). 

Operands (W_X1, ..., W_X8), Clk synchronization 

pulses and Reset adder reset pulse are fed to the 

input of the multi-input MSm adder. At the output of 

the multi-input adder MSm through two 

synchronization pulses Clk we get the sum Out_Sm. 

The multi-input adder MSm is implemented on the 

basis of eight single-bit multi-input adders 

Add_7_3_Sym, sixteen Add_3_2 and eight-bit 

parallel Add_Bin_Paral adder.  

Time diagrams illustrating the operation of the 

MSm multi-pin adder are shown on Fig. 6. 

 

 

Fig.  5. Multiple input adder MSm 
Source: compiled by the authors

 

 
 

Fig. 6. Time diagrams of the multi-input adder MSm operation  
Source: compiled by the authors

Fig. 6 shows an example of calculating the qth 
macroparticle product by PМq summation of the par-
tial products of Pjq on an 8-input 7-bit adder. For 
weight coefficients W1=0001011=B16, 
W2=0100010=2216, W3=0100000=2016, 
W4=0111000=3816, W5=0111010=3A16, 

W6=0011101=1D16, W7=0101110=2E16, 
W8=0101100=2C16 and values of q groups of bits of  
 
input data K1q=X1[2(r-q+1)-1] X1[2(r-q)] X1[2(r-q+1)+1]=001=1; 
K2q=X2[2(r-q+1)-1] X2[2(r-q)] X2[2(r-q+1)+1]=010=1, K3q=X3[2(r-
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q+1)-1] X3[2(r-q)] X3[2(r-q+1)+1]=011=2, K4q=X4[2(r-q+1)-1] 
X4[2(r-q)] X4[2(r-q+1)+1]=001=1, K5q=X1[2(r-q+1)-1] X5[2(r-q)]  
X5[2(r-q+1)+1]=000=0, K6q=X1[2(r-q+1)-1] X6[2(r-q)] X6[2(r-

q+1)+1]=111=0, K7q=X1[2(r-q+1)-1] X7[2(r-q)] X7[2(r-

q+1)+1]=000=0, K8q=X1[2(r-q+1)-1] X8[2(r-q)] X8[2(r-

q+1)+1]=111=0 the following values are formed partial 
products P1q=B16, P2q=2216, P3q=4016, P4q=7016, 
P5q=016, P6q=016, P7q=016, P8q=016. With the help of 
an 8-input 7-bit adder, we sum up the partial prod-
ucts P1q, …, P8q and we get at the output Out_Sm the 
macroparticle product PMq, which is equal to 0DD16. 

The summation time in an eight-way eight-bit 
cascade parallel-parallel adder is equal to 

t8AddCPP=log2m×7log2n×tlog.AND=3×21×tlog.AND= 
=63tlog.AND, 

and the summation time in an eight-input eight-bit 
adder using a vertical and multi-operand approaches 
and 3- and 7-input single-bit adders is equal to, 

7 3 3 2 88 log2 5AddV Add Add Add .ANDt t t t t
− −

= + + = +  

log 2 log log6 7log 8 32.AND .AND .ANDt t t+ +  = , 

where m is the number of inputs, n is the bit depth of 
the inputs, tлог.І is the response time of the logical 
element AND, 7log2n× tlog.AND is the addition time 

on the parallel n bit adder, 
7 3Addt
−

 – addition time on 

7-input single-bit adder, 
3 2Addt
−

 – addition time on 3-

input single-bit adder, 
8Addt  – addition time on 8-bit 

parallel adder. A comparison of the addition time of 
an eight-input eight-bit cascade parallel-parallel 
adder with the addition time of an eight-input eight-
bit adder using vertical and multi-operand 
approaches and 3- and 7-input single-bit adders 
shows that the addition time per adder using vertical 
and of multi-operand approaches and 3- and 7-input 
one-bit adders is reduced by approximately two 
times. 

Reducing the time of obtaining the sum in the 
multi-input adder MSm is achieved through the 
integrated use of vertical and multi-operand 
approaches and multi-input single-digit adders 
combined according to the principle of the Wallace 
tree. 

DISCUSSION OF RESULTS 

It is proposed to implement the CNN with the 
specified technical parameters on the basis of a 
problem-oriented approach that uses the processor 
core with supplemented hardware accelerators that 
implement basic operations of the CNN. 

High efficiency of hardware use for realization 
of two-dimensional convolution in a sliding window 
in real time is achieved by coordinating the duration 

of the conveyor cycle 
CSPT  with the duration of the 

cycle of receipt of columns of input data and weights 

tc, which leads to minimization of hardware costs for 
their implementation and, accordingly, to increase 
the efficiency of equipment use. The coordination of 

tс with 
CSPT  may require both an increase and a 

decrease in the duration of the conveyor cycle. The 

main ways to reduce 
CSPT  are: the use of algorithms 

that reduce the number of partial products (an 
algorithm with the formation of partial products for 
the sum of two pairs of products with the analysis of 
one bit of factors); conveyorization of a multi-input 
adder by splitting it into steps; parallel inclusion of 
two or more devices for calculating the scalar 
product, the number of which is determined mainly 
by the time tc of receipt of input data and 
weighting coefficients. The main ways to increase 

CSPT  are: the use of algorithms that reduce the 

number of steps of the pipeline (Booth's algorithm, 
an algorithm with the formation of group partial 
products); implementation of two or more iterations 
by one step of the pipeline Algorithm. 

Further directions of research are the 
development of a method and algorithms for end-to-
end design of convolutional neural networks for 
recognition of biometric images. The 
implementation of recognition algorithms will be 
carried out on the basis of FPGA. 

CONCLUSION 

1. A parallel-flow structure of hardware for the 
implementation of two-dimensional convolution in a 
sliding window has been developed, which is 
focused on VLSI-implementation with high 
efficiency of equipment use and is the basis for the 
implementation of the hardware accelerator CNN. 

2. The method of group summation has been 
improved, which, using multi-input single-digit 
adders combined according to the principle of the 
Wallace tree, provides a reduction in summation time. 

3. The method of parallel-stream calculation of 
scalar product by forming group partial products for 
4 and more digits of factors using modified Booth 
algorithm is proposed. This reduced the number of 
steps of the conveyor by 4 or more times.  

4. It is shown that the development of a 
hardware accelerator for calculating a two-
dimensional convolution in a sliding window with 
high efficiency of equipment use is reduced to  
providing calculations in real time at minimal 
hardware costs. This is achieved by matching the 
time of receipt of the columns of input data and  
weighting coefficients with the duration of the 
conveyor cycle of the accelerator. 

5. The structure of hardware for realization of 
two-dimensional convolution in a sliding window,  
which is focused on VLSI-implementation with high 
efficiency of equipment use, has been developed. 
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6. Single-bit 7, 15 and 31 input adders were 
simulated based on the FPGA EP3C16F484 of the 

Cyclone III family of Altera company and an 8-input 
7-bit adder was synthesized on their basis. 
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АНОТАЦІЯ 

Проаналізовано і виділено три основні підходи до побудови комп’ютерних систем: програмний, апаратний та пробле-

мно-орієнтований. Вибрано для реалізації ЗНМ проблемно-орієнтований підхід. Цей підхід використовує процесорне ядро з 

апаратними прискорювачами, що реалізують базові операції ЗНМ. Розробку комп’ютерних систем для реалізації ЗНМ доці-

https://doi.org/10.1016/j.parco.2022.102945
https://doi.org/10.1016/j.sysarc.2018.12.008
https://doi.org/10.1016/j.sysarc.2022.102567
https://dl.acm.org/toc/tecs/2022/21/5
https://dl.acm.org/toc/tecs/2022/21/5
https://doi.org/10.1145/3524453
https://doi.org/10.48550/arXiv.1912.07284
https://dl.acm.org/toc/taco/2022/19/3
https://doi.org/10.1145/3519598
https://doi.org/10.3390/electronics10091025
https://doi.org/10.15276/aait.02.2019.2
mailto:ivan.tsmots@gmail.com
https://www.scopus.com/authid/detail.uri?authorId=24484154400
mailto:olber62@gmail.com
https://orcid.org/0000-0001-6507-9117


Tsmots I. G., Berezsky   O. M., Berezkyy M. O.   /   Applied Aspects of Information Technology        

                                                                                                  2023; Vol.6 No.1: 13–27 

ISSN 2617-4316 (Print)                                   
ISSN 2663-7723 (Online) 

Information systems and technology 27 

 

льно здійснювати на основі інтегрованого підходу. Цей підхід включає сучасну елементу базу, існуючі апаратні та програм-

ні засоби для реалізації ЗНМ; методи і алгоритми реалізації ЗНМ; методи, алгоритми і НВІС-структури для  

 

реалізації базових операцій ЗНМ; методи та засоби автоматизованого проектування апаратних і програмних засобів орієн-

тованих на реалізацію ЗНМ комп’ютерних систем. Для розробки комп’ютерних систем для реалізації ЗНМ вибрано підхід, 

який включає: змінний склад обладнання; використання базису елементарних арифметичних операцій; організація процесу 

обчислення скалярного добутку як виконання єдиної операції; конвеєризації і просторового паралелізму; локалізації і спро-

щення зв’язків між сходинками конвеєра; узгодження часу формування вхідних даних і вагових коефіцієнтів з тривалістю 

конвеєрного такту. Показано, що для зменшення часу опрацювання зображень великого обсягу найдоцільніше використати 

паралельно-потокову НВІС-реалізацію базових операцій. Вибрано модифікованиий алгоритм Бута для формування частко-

вих добутків у паралельно-потоковому пристрою обчислення скалярного добутку, що забезпечило зменшення у два рази 

кількості сходинок конвеєра. Вдосконалено метод групового підсумовування, який за рахунок використання багатовходо-

вих однорозрядних суматорів, об’єднаних за принципом дерева Уоллеса, забезпечує зменшення часу підсумовування. Роз-

роблено метод паралельно-потокового обчислення скалярного добутку у ковзаючому вікні, який за рахунок узгодження 

часу надходження стовпчиків вхідних даних і вагових коефіцієнтів з тривалістю конвеєрного такту забезпечує високу ефек-

тивність використання обладнання та обчислення у реальному часі. Визначено основні шляхи узгодження часу надходжен-

ня стовпчиків вхідних даних і вагових коефіцієнтів з тривалістю конвеєрного такту роботи апаратних засобів, які реалізу-

ють двовимірну згортку. Розроблено структуру апаратних засобів для реалізації двовимірної згортки у ковзаючому вікні, 

яка орієнтована на НВІС-реалізацію з високою ефективністю використання обладнання. Вибрано для реалізації апаратних 

прискорювачів програмовані логічні інтегральні схеми. Розроблено та відмодельовано на базі FPGA EP3C16F484 сімейства 

Cyclone III фірми Altera однорозрядні 7, 15 і 31 входові суматори та синтезовано на їх базі 8-входовий 7-розрядний суматор. 

Ключові слова: Згорткові нейронні мережі; апаратний прискорювач; проблемно-орієнтований підхід; паралельно-

потокова реалізація; багатовходовий суматор; скалярний добуток; двовимірна згортка 
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