
Applied Aspects of Information Technology  2021; Vol. 4 No. 4: 354–365 

354 Software Engineering аnd Systems Analysis ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 

DOI: https://doi.org/10.15276/aait.04.2021.5 

UDС 004.922 

Towards a software defect proneness model: 

feature selection 

Vitaliy S. Yakovyna1), 2) 
ORCID: https://orcid.org/ 0000-0003-0133-8591; yakovyna@matman.uwm.edu.pl. Scopus Author ID: 6602569305 

Ivan I. Symets2) 
ORCID: https://orcid.org/ 0000-0003-1873-3168; ivan.i.symets@lpnu.ua. Scopus Author ID: 57202453582 

1) University of Warmia and Mazury in Olsztyn, 2, Oczapowskiego, St. Olsztyn, 10-719, Poland
2) Lviv Polytechnic National University, S. Bandery Str. 12, Lviv, 79013, Ukraine

ABSTRACT 

This article is focused on improving static models of software reliability based on using machine learning methods to select the 

software code metrics that most strongly affect its reliability. The study used a merged dataset from the PROMISE Software 

Engineering repository, which contained data on testing software modules of five programs and twenty-one code metrics. For the 

prepared sampling, the most important features that affect the quality of software code have been selected using the following 

methods of feature selection: Boruta, Stepwise selection, Exhaustive Feature Selection, Random Forest Importance, LightGBM 

Importance, Genetic Algorithms, Principal Component Analysis, Xverse python. Basing on the voting on the results of the work of 

the methods of feature selection, a static (deterministic) model of software reliability has been built, which establishes the 

relationship between the probability of a defect in the software module and the metrics of its code. It has been shown that this model 

includes such code metrics as branch count of a program, McCabe’s lines of code and cyclomatic complexity, Halstead’s total 

number of operators and operands, intelligence, volume, and effort value. A comparison of the effectiveness of different methods of 

feature selection has been put into practice, in particular, a study of the effect of the method of feature selection on the accuracy of 

classification using the following classifiers: Random Forest, Support Vector Machine, k-Nearest Neighbors, Decision Tree 

classifier, AdaBoost classifier, Gradient Boosting for classification. It has been shown that the use of any method of feature selection 

increases the accuracy of classification by at least ten percent compared to the original dataset, which confirms the importance of this 

procedure for predicting software defects based on metric datasets that contain a significant number of highly correlated software 

code metrics. It has been found that the best accuracy of the forecast for most classifiers was reached using a set of features obtained 

from the proposed static model of software reliability. In addition, it has been shown that it is also possible to use separate methods, 

such as Autoencoder, Exhaustive Feature Selection and Principal Component Analysis with an insignificant loss of classification and 

prediction accuracy. 

Keywords: Software reliability; machine learning algorithms; defect; feature selection; software defect prediction 

For citation: Yakovyna V. S., Symets I. I. "Towards a software defect proneness model: feature selection". Applied Aspects of 

Information Technology. 2021; Vol.4 No.4: 354–365. DOI: https://doi.org/10.15276/aait.04.2021.5 

INTRODUCTION 

A software defect is a issue in system 

components or modules that adversely affects the 

appearance, performance, functionality, or 

productivity and may result in failure of certain 

functionalities or malfunctions of the system. Most 

software defects occur during software development 

in the source code of the program and are caused by 

a number of factors that occur at different stages of 

the product life cycle, namely: software code 

defects, communication problems, inaccuracies in 

software requirements, poor documentation and 

design, complexity of a system, deadline for 

completion a project, human factor, insufficient 

testing, etc. 

In order to improve the quality and reliability of 

software, methods for predicting software defects, 

© Yakovyna V., Symets I., 2021 

are used to identify potential defects.  Traditional 
defect detection methods are based on the analysis 
of software product metrics and are used to classify 
potentially defective modules or to predict the 
approximate number of defects in a particular 
system module [1]. As a result, the software defects 
prediction method can help developers identify 
defects basing on available software metrics using 
data analysis techniques, and thus improve software 
quality, which, as a result, reduces software 
development costs during development and 
maintenance. 

LITERATURE REVIEW 

Relevance of the defect prediction process – 
Defect prediction is a popular area of research and is 
actively developing as far as it allows reducing the 
effort and resources required for software testing. 
This is evidenced by the large number of studies and 
works in this direction. 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

https://doi.org/
https://orcid.org/0000-0002-3724-430
https://doi.org/


Applied Aspects of Information Technology                           2021; Vol. Vol. 4 No. 4: 354–365 

ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 

Software Engineering аnd Systems Analysis 355 

 

In the study [2] a comparative study of different 

classification algorithms for the classification of 

software modules into those that tend to defect and 

not tend to defects has been described. A number of 

well-known machine learning algorithms, such as 

Decision Trees, Artificial Neural Network (ANN), K 

nearest neighbor, SVM and Ensemble Learning have 

been considered, where the Stacking Ensemble 

technique proved to be the best with the best result 

for all data sets with an accuracy of defects 

prediction greater than 0.9. The study [3] proposes 

the Deep belief network prediction model 

(DBNPM), a system for determining whether a 

software module contains defects. The key idea of 

DBNPM is the Deep belief network (DBN) 

technology, which is an effective technique for deep 

learning in image and natural language processing, 

the characteristics of which are similar to the defects 

of the original program. 

This study [4] describes the defects prediction 

based on the reduction of the scale of the two 

focuses (characteristics of defects and defects). It 

provides a deep analysis of various key issues 

including how to create a set of defects 

characteristics comparison and a set of defects 

comparison, the repulsion theory for defects and 

defects characteristics, as well as a methodology and 

a model for defects prediction. Experimental results 

demonstrate that this multi-agent predicting 

methodology is very effective for predicting the 

quality of space projects software. 

The defects prediction models can be built 

basing on the project data from previous versions or 

releases, but in the case of a new project there is no 

such data for prediction available, and because of 

this, an approach known as cross-project defect 

prediction (CPDP) is used. The study [5] describes 

the application of the bandit algorithm (BA) to 

CPDP in order to select the most suitable training 

project from a set of projects. The experiment has 

been performed on two data sets (NASA and 

DAMB, a total of 12 projects), and it shows that the 

use of BA to predict defects in CPDP is promising 

and may surpass existing approaches. The study [6] 

proposes an algorithm based on TSboostDF transfer 

learning. TSboostDF integrates the BLS sampling 

method, which is based on sample weight, with the 

transfer training method in order to overcome the 

drawbacks of traditional algorithms used in CPDP. 

Also, in addition to predicting module defects, 

it is important to determine the severity level of 

software defects, which indicates the affect of an 

error on the program performance and how quickly 

these errors should be corrected, as far as setting 

priorities for these defects manually based on 

experience can be an inaccurate severity prediction 

which delays correction of critical errors. In the 

study [7], methods for automating the assignment of 

the appropriate severity level based on the results of 

an error report using various methods of word 

embedding techniques are described. 

Using feature selection in defect prediction – 

Using feature selection methods is a good solution to 

the problem of high dimension of data sampling and 

these methods are actively used in the context of 

software defect prediction. There is a large amount 

of research on the feature selection in the defect 

prediction, the main purpose of which is to choose 

the most accurate combination of the method of 

feature selection and the algorithm of machine 

learning for defects prediction. 

In the work [8], 46 methods of defects 

prediction have been studied using the Decision Tree 

classifier for 25 sets of software defect data from 4 

software repositories. The experimental results have 

shown that there is no single best FS method, as far 

as their respective indicators depend on the choice of 

classifiers, performance evaluation indicators and 

data set (however, recommendations for the use of 

methods have been provided). 

The research work [9] focuses on two areas: the 

choice of function and the transfer of instances 

distance-weight. While reducing the difference 

between projects in terms of function engineering, a 

transfer learning technology to build an inter-project 

model for predicting defects WCM-WtrA and a 

model with many sources Multi-WCM-WTrA have 

been introduced. These results show that our method 

has an average improvement of 23 % compared to 

the TCA + algorithm for AEEEM datasets and an 

average improvement of 5 % for ReLink datasets. 

In the work [10] 12 automated methods for 

selecting features for consistency, correlation, 

performance, computational value, and affect on the 

size of interpretation have been studied. 

Also, along with existing and well-known 

methods of feature selection, new methods are being 

actively developed. The hybrid multi-filter wrapper 

method for feature selection is proposed to select 

features in the prediction of a software defect that 

combines the advantages of filtering and wrapping 

methods [11]. The study [12] proposes to select 

features using the Firefly algorithm (FA). Firefly 

algorithm is a new evolutionary computational 

technique inspired by the firefly flick process. It can 

quickly search in the function space for an optimal 



Applied Aspects of Information Technology                            2021; Vol. Vol. 4 No. 4: 354–365 

356 Software Engineering аnd Systems Analysis ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 
 

or near-optimal subset of features to minimize a 

particular suitability function. A new method of 

wrapping is proposed, which consists of two main 

stages of selection of features and classification [13]. 

The first stage uses Grey Wolf Optimization (GWO) 

to find the best characteristics in the defect 

identification dataset; the second stage evaluates the 

characteristics using a machine classifier of 

reference vectors. 

Summing up, we can note that in recent years 

there has been an increased interest in building static 

models of software reliability and prediction 

software defects based on code metrics and project 

characteristics. As the analysis of the literature 

showed, the existing approaches do not have high 

enough accuracy of the prediction; there is no 

consensus on the impact of software code metrics on 

its quality indicators, and in particular, reliability; 

the question of transferability of results obtained on 

the basis of data on some projects to the 

characteristics of other software is open, and, 

accordingly, the question of determining the 

universal set of metrics of program code that most 

correlate with its quality indicators remains relevant. 

Therefore, the aim of this work is to improve the 

static model of software reliability based on the use 

of machine learning methods to select the indicators 

of software code that are most correlated with its 

reliability. 

THE PURPOSE OF THE ARTICLE 

This article is aimed at analyzing and 

improving static models of software reliability using 

machine learning methods to select the software 

code metrics that have the strongest affect on its 

reliability. 

To achieve and study this goal, it is proposed to 

consider the following tasks: 

1. Prepare a data set from the PROMISE 

Software Engineering Repository and combine the 

test results of 5 NASA Metrics Data Program 

projects. 

2. Analyze the methods of feature selection, 

apply different methods to a balanced data set and 

identify features that are important for the model in 

each of the selected methods. 

3. Compare different models of machine 

learning, such as methods: fandom forest (RF), 

support vector machine (SVM), k-nearest neighbors 

(kNN), decision tree classifier (DT), AdaBoost 

classifier (AB), Gradient Boosting (GB) for analysis 

of classification with selected code metrics.  

4. Choose the best combination of program 

code metrics basing on the accuracy of each 

classifier that can be used to effectively predict 

system module defects. 

DATA SET FOR RESEARCH  

During the study the data from the publicly 

available PROMISE Software Engineering 

Repository have been used. To make the study more 

efficient, several data sets have been combined using 

code metrics. The following data have been 

collected in the NASA Metrics Data Program and 

they consist of information on the following 

projects: 

Project KC1 is a software system written in 

C++, which implements resource management on 

the reception and processing of terrestrial data. 

Project KC2 is a software system written in 

C++ that processes scientific data (the other part of 

KC1, which is written by another team, and it uses 

certain common libraries with KC1). 

Project PC1 is a module of a software system 

written in C, for controlling the flight of a satellite in 

orbit. 

Project CM1 is a module written in C to 

perform certain functions on a spacecraft. 

Project JM1 is a system written in C used for 

predictions based on simulations for terrestrial 

systems. 

The data set for the study consists of 15,123 

records, which consist of the 21 code metrics 

(Fig.1); the target metric in this study will be the 

defects metric, which may contain the value true 

(module with the specified metrics with a defect) or 

false (module with the specified metrics without a 

defect). 

 
Fig. 1. Description of metrics from the  

selected dataset 
Source: compiled by the authors 



Applied Aspects of Information Technology                           2021; Vol. Vol. 4 No. 4: 354–365 

ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 

Software Engineering аnd Systems Analysis 357 

 

The data set is unbalanced and contains 2,665 

records of defective modules and 12,458 records of 

modules without any defects. 

Table 1 shows the distribution of data on 

projects. 

Table 1. Data distribution on projects 

Project Defective 

modules 

Modules without 

defects 

Number of 

modules 

КС1 326  1783  2109 

КС2 107  415 522 

РС1 77 1032 1109 

СМ1 49 449 498 

JM1 2106  8779 10885 

 2 665 12 458 15 123 
Source: compiled by the authors 

As noted above, the data set is unbalanced with 

respect to the value of the defects metric 

(2,665/12,458). The effect of unbalanced data in 

machine learning is not evident, i.e. it does not cause 

an instantaneous error when creating and running a 

model, but the results can be false. If the degree of 

class misbalance for the majority class is 

extraordinary, then a machine-trained classifier can 

provide high general prediction accuracy, as far as 

the model is likely to predict the majority of samples 

belonging to the majority class. 

Therefore, for further study, the data have been 

balanced as follows – a subset of 5,330 records has 

been selected in which the values of the defects 

metric have been distributed 50 % to 50 % and 

further studies have been performed on this data set. 

Eighty percent of the data of 5,330 records have 

been used as a balanced training sample, and twenty 

percent of the unbalanced data have been used to test 

the obtained models. 

FEATURE SELECTION PROCESS  

Functions or features selection (also known as 

variables selection, attributes selection, or selection 

of a subset of variables) is the practice of selecting a 

subset of the corresponding features (predictors and 

variables) for being used in building a model. It is 

the automatic selection of attributes present in the 

data (for example, columns in the tabular data) that 

is the most relevant and appropriate to the problem 

of predictive modeling that is being studied. 

The purpose of the feature selection in machine 

learning is to find the best set of functions that 

allows building useful models of the studied 

phenomena.  

The use of feature selection methods gives us 

the following advantages at the output: 

 a simpler model – simple models are easy to 

explain and understand – a too complex and 

incomprehensible model is not valuable; 

 shorter learning time – a more precise subset of 

functions reduces the amount of time required to 

learn the model; 

 decrease of variance – increase of the accuracy 

of estimates that can be obtained for this 

modeling; 

 lower memory costs during performance. 

As far as we have the defects target feature, 

during this study we are going to consider 

supervised function selection methods to perform 

the feature selection process, which in turn are 

divided into Filter methods, Wrapper methods, and 

Embedded methods. 

Filter methods – These methods are based on 

probability theory and statistical approaches, and 

usually consider each feature independently. The 

main methods in this method class are the following: 

Chi-square, IG-indexing (information gain 

calculation), Variance Threshold, Fisher Score, 

Anova F-value. They assess the importance of 

features only on the basis of their inherent 

characteristics, not including any learning algorithm 

[14]. The usage of these methods is effective if the 

feature set is very large (one hundred or more), 

because filtering methods are fast, they may work 

well as the first step in selecting in order to exclude 

some variables. 

As far as our sampling consists of 21 metrics, 

the usage of this class of methods will be inefficient 

for our study for the feature selection method. 

Wrapping methods work by estimating a 

subset of functions by means of a machine learning 

algorithm that uses a search strategy to view the 

space of possible subsets of functions, estimating 

each subset based on the performance quality of this 

algorithm [15]. 

Embedded methods perform the process of 

functions selections within the construction of the 

machine learning algorithm. In other words, they 

perform a selection of functions when learning a 

model, so we call them embedded methods. This 

class of methods implements the advantageous 

aspects of the two previous classes of methods. 

Unlike wrapping methods, which iteratively 

consider unimportant features based on evaluation 

metrics, embedded methods perform function 

selection and algorithm learning in parallel [16]. 

All research in this work is performed using the 

Python programming language and mainly the 



Applied Aspects of Information Technology                            2021; Vol. Vol. 4 No. 4: 354–365 

358 Software Engineering аnd Systems Analysis ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 
 

sklearn library (Scikit-learn – one of the most widely 

used Python packages for Data Science and Machine 

Learning. It allows performing many operations and 

provides many algorithms for work). 

Before starting using the feature selection 

methods, it is worth building a data correlation 

matrix, as it is a powerful tool for generalizing a 

large data set, as well as for determining and 

visualizing patterns in the data provided. It is 

possible to remove from the set of interrelated 

metrics all but one, without significant loss of 

information or affect on model quality. The 

correlation between metrics was determined for the 

study, there is a significant correlation between the 

metrics e and t, as well as between the metrics b and 

v, the coefficient of which is 1. The correlation 

between n (Operator and Operand total (Halstead)) 

and total_Op is 1, and between n (Operator and 

Operand total (Halstead)) and total_Opnd the 

correlation coefficient is 0.99. There is also a 

significant correlation, 0.93, between loc and 

lOCode. 

Considering these results, it has been decided to 

discard the following metrics from our dataset: t, b, 

total_Op. total_Opnd, lOCode. 

To select features, we have used the following 

feature selection methods: 

Boruta (Using Random Forest Classifier) 

Boruta is a random forest method, so it works 

for tree models such as Random Forest or XGBoost, 

but also works with other classification models, such 

as logistic regression or SVM. 

Boruta iteratively removes functions that are 

statistically less relevant than a random probe 

(artificial noise variables introduced by Boruta 

algorithm). The rejected variables in each iteration 

are removed from consideration in the next iteration. 

As a rule, this results in a good global optimization 

of the functions selection [17]. 

Applying this feature selection method for our 

sample, we have determined that the following 

metrics are important for further research (Fig. 2): 

loc, v(g), iv(G), n, v, i, e, locCodeAndComment, 

uniq_Opnd, branchCount.  

Step-wise selection 

Step-wise selection is a two-way method, based 

on a combination of Forward selection and 

Backward elimination. It is considered less resource-

consuming as it reconsiders the possibility of adding 

predictors back to the model that has been removed 

(and vice versa). However, considerations are still 

made based on local optimization at any iteration. 

 

Fig. 2. Implementation and results of the  

Boruta method 
Source: compiled by the authors 

As far as this method is based on sequential 

addition/subtraction of metrics from the set (it is 

necessary to specify their exact number for 

selection), the plot_sequential_feature_selection 

library has been used to visualize the estimate at 

different values of the k_features parameter in order 

to facilitate decision making (Fig. 3). From the given 

figures it is visible that the best value of accuracy 

metrics is at a choice of 13 metrics which will be 

used further: loc ,  ev(g) ,  iv(G) ,  n ,  v ,  l ,  i ,  e, 

lOComment, locCodeAndComment ,  branchCount, 

uniq_Op,  uniq_Opnd. 

 

Fig. 3. Visualization of the estimate at different 

values of the parameter k_features for the Step-

wise method Exhaustive Feature Selection 
Source: compiled by the authors 

Exhaustive Feature Selection 

In the case of Exhaustive Feature Selection, the 

efficiency of the machine learning algorithm is 

estimated on the basis of all possible combinations 

of functions in the data set. A subset of functions 

that provides the best performance is selected. 

Exhaustive search algorithm is the most resource-

consuming algorithm of all wrapping methods, 

because it tests the whole combination of functions 

and chooses the best one [18]. 



Applied Aspects of Information Technology                           2021; Vol. Vol. 4 No. 4: 354–365 

ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 

Software Engineering аnd Systems Analysis 359 

 

Figure 4 shows the implementation of the 

method with the choice of the following features for 

analysis: loc, v(g), N, V, I, branchCount. 

 

Fig. 4. Implementation and results of the 

Exhaustive Feature Selection method 
Source: compiled by the authors 

Random Forest Importance 

The functions selection by means of a random 

forest belongs to the category of embedded methods. 

Random forests are a kind of data processing 

algorithm that combines a number of decision trees. 

Tree-based strategies used by random forests are 

naturally ranked according to how well they improve 

the cleanliness of a node, or in other words, reduce 

impurities (Gini Impurities) over all trees. The nodes 

with the lowest decrease in impurities occur at the 

beginning of the trees, while the nodes with the 

lowest decrease in impurities occur at the end of the 

trees. Thus, by pruning trees under a certain node, 

we can create a subset of the most important 

features [19]. 

We calculate the importance of the features 

using node impurities in each decision tree. In a 

random forest, the ultimate importance of the 

features is the average value of all the features of the 

decision tree. 

Applying this method of feature selection for 

our sample, we have determined that the following 

metrics are important for further research (Fig. 5): 

loc, N, V, D, I, E, locCodeAndComment. 

This approach is similar to the method 

described above (Random Forest Importance), but 

basically uses the Light GBM algorithm, because it 

also has the attribute feature_importance. Light 

GBM is a tree-based learning algorithm, Light GBM 

grows a tree vertically, while another algorithm 

grows it horizontally, which means that this 

algorithm grows on a tree by leaves, while another 

algorithm grows by level [19]. 

 

Fig. 5. Implementation and results of the Random 

Forest Importance method 
Source: compiled by the authors 

Light Gradient Boosting Machine 

Importance 

Applying this feature selection method for our 

sample, we have determined that the following 

metrics are important for further study (Fig. 6): loc, 

N, V, L, D, I, E, uniq_Op. 

 

Fig. 6. Implementation and results of the Light 

GBM method 
Source: compiled by the authors 

Genetic Algorithms 

Genetic algorithms are global optimization 
methods for finding very large spaces. They were 
inspired by the biological mechanisms of natural 
selection and reproduction. They work in all 
populations of possible solutions (so-called 
generations), where each solution in the search space 
is represented as a string of finite length 
(chromosome) over a finite set of symbols, which 
then uses the target (or suitable) function to estimate 
the relevance of each solution [20]. 

In terms of feature selection, each chromosome 
will represent a subset of features, and it will be 



Applied Aspects of Information Technology                            2021; Vol. Vol. 4 No. 4: 354–365 

360 Software Engineering аnd Systems Analysis ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 
 

represented by binary coding: 1 means “select” a 
specific feature, and 0 means “do not select” a 
feature. 

The implementation and results of the use of 

this method are shown in Fig. 7, and the following 

features are selected for further study: loc, iv(G), I, 

lOComment, locCodeAndComment, uniq_Op. 

 

Fig. 7. Implementation and results of the Genetic 

Algorithms method 
Source: compiled by the authors 

Principal Component Analysis 

Principal Component Analysis is a statistical 

method for converting large-dimensional data to 

low-dimensional data by selecting most important 

functions that cover maximum information about the 

data set. The characteristics are selected based on the 

variance they cause in the original data. The feature 

that causes the greatest variance is the first principal 

component. The function responsible for the second 

largest variance is considered to be the second 

principal component, and so on. It is important to 

note that the principal components do not have any 

correlation with each other [21]. 

Applying this feature selection method for our 

sample, we have determined that the following 

metrics are important for further study (Fig. 8): loc, 

v(g), ev(g), iv(G), N, V, L, D, I, E. 

 

Fig. 8. Implementation and results of the 

Principal Component Analysis method 
Source: compiled by the authors 

Xverse python for feature selection  

Xverse uses different methods for the feature 

selection. When the algorithm selects a function, it 

votes for that function. Finally, the Xverse calculates 

the total number of votes for each feature and then 

selects the best ones based on the votes. Thus, we 

select the best variables with minimal effort in the 

function selection process. 

Xverse uses the following methods to select 

important features: Information Value using Weight 

of evidence; Variable Importance using Random 

Forest; Recursive Feature Elimination; Variable 

Importance using Extra trees classifier; Chi-Square 

best variables; L1 based feature selection. 

According to the results of the performance of this 

method, we choose the metrics for which the majority 

of methods voted (4/6): loc, locCodeAndComment, 

uniq_Opnd, branchCount, N, I, L. 

Autoencoders method (Deep learning)  

Deep learning involves the use of neural 

networks to create highly effective models of 

machine learning. What is particularly interesting 

about neural networks is their ability to study the 

nonlinear relationships between features. Most of the 

traditional methods we have studied do not perform 

this: in general, the methods we have considered can 

only investigate linear relationships between objects. 

This method uses a special neural network 

architecture called autoencoders. AutoEncoder is 

used for feature selection in order to reveal existing 

nonlinear relationships between features. 

By means of this method, the following 

important features have been identified (Fig. 9) :loc, 

v(g), N, branchCount, V, E. 

 

Fig. 9. Implementation and results of the 

Autoencoders method 
Source: compiled by the authors 



Applied Aspects of Information Technology                           2021; Vol. Vol. 4 No. 4: 354–365 

ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 

Software Engineering аnd Systems Analysis 361 

 

RESEARCH RESULTS  

Nine feature selection methods have been used 

to select features, which differ in their types and 

approaches to feature selection: 

• Boruta using Random Forest Classifier (RF) 

• Stepwise selection (SWS) 

• Exhaustive Feature Selection (EFS) 

• Random Forest Importance (RFI) 

• LightGBM Importance (LightGBM) 

• Genetic Algorithms (GA) 

• Principal Component Analysis (PCA) 

• Xverse python for feature selection (Xverse) 

The results of these methods are shown in 

Fig. 10, which describes the number of votes for a 

particular feature selected by the methods described 

above (1 – the feature has been selected by a feature 

selection method, 0 – not selected). 

 

Fig. 10. Results of the feature selection methods 
Source: compiled by the authors 

The features (hereinafter this set of features will 

be called Important features) which received more 

than half of the votes (5/9) have been selected as 

important ones. They are loc, N, I, V, E, v(g), 

branchCount. 

The next step is to compare different models of 

machine learning, such as fandom forest; support 

vector machine; k-nearest neighbors; decision tree 

classifier; AdaBoost classifier; Gradient Boosting 

for classification. We are going to compare the 

results of the classifiers with different features 

selected in the previous step in order to select the 

best combination of program code metrics based on 

the accuracy of each classifier that can be used to 

predict the defect of system modules. 

The performance of these classifiers will be 

assessed by the accuracy metric. Accuracy is a 

metric of how often a learned model is correct, and 

classification results are often presented as an error 

matrix. The matrix consists of 4 different 

combinations of predicted and actual values. The 

predicted values are described as positive and 

negative, and actual – as true and false (TP – true 

positive; TN – true negative; FP – false positive; FN 

– false negative).  

The accuracy metric shows the following ratio 

(the ratio of correct predictions to their total 

number): 

Accuracy=(TP+TN)/(TP+TN+FP+FN). 

Table 2 shows the results of the performance of 

classifiers with the accuracy of evaluation for the 

features selected by the feature selection methods. 

To train the models, 80 % of the data from the total 

data sample have been selected and balanced. 20 % 

of unbalanced data from the total data sample have 

been used for testing, so that the test sample 

reflected the real distribution of data in the projects. 

Table 1. Results of performance of classifiers with 

the accuracy of evaluation for the features 

Feature selec-

tion 

method 

Accuracy 

RF SVM KNN DT AB GB 

Boruta 0.811 0.827 0.782 0.778 0.793 0.807 

SWS 0.782 0.797 0.765 0.754 0.786 0.776 

EFS 0.840 0.852 0.804 0.795 0.821 0.841 

RFI 0.803 0.820 0.817 0.752 0.816 0.800 

LGBM 0.812 0.807 0.794 0.771 0.803 0.820 

GA 0.795 0.801 0.780 0.7695 0.803 0.799 

PCA 0.821 0.830 0.821 0.799 0.842 0.823 

Xverse 0.805 0.810 0.789 0.778 0.808 0.799 

Encoder 0.844 0.847 0.817 0.766 0.823 0.822 

Important 

features 

0.856 0.838 0.823 0.798 0.815 0.860 

Whole 

features 

0.702 0.725 0.618 0.617 0.715 0.691 

         Source: compiled by the authors 

The analysis of the table shows that the 

important features selected on the basis of voting 

from all methods show the highest predicting 

accuracy for 4 of the 6 used classification 

algorithms; in the case of SVM, although these 

measured features are not the most accurate, they are 

still among the three most accurate feature selection 

methods, and only for AdaBoost classifier 

classification method, the use of this set of features 

show slightly worse prediction result after PCA, 

Autoencoder, and EFS methods. In addition, the top 

three prediction accuracy methods include feature 

selection methods such as EFS – the accuracy of five 

of the six classification algorithms using this set of 

features is in the top three, and in the case of the 

SVM method, this accuracy is the highest of all; 

Autoencoder – 5 out of 6 classification algorithms 

are in the top three in terms of prediction accuracy, 

and PCA – 4 out of 6 algorithms are in the top three, 

but for two of them (decision tree and AdaBoost 

classifier) this accuracy is the highest. Thus, we can 

conclude that for this study and the classification 

algorithms used, the best accuracy of the prediction 

for most classifiers has been obtained using a set of 



Applied Aspects of Information Technology                            2021; Vol. Vol. 4 No. 4: 354–365 

362 Software Engineering аnd Systems Analysis ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 
 

features obtained by voting from all the studied 

algorithms. In addition, it has been shown that it is 

also possible to use certain methods, such as 

Autoencoder, EFS and PCA, with almost no loss of 

classification and prediction accuracy. In addition, a 

significant increase in the accuracy of software 

defect prediction by reducing the sample of features 

has been shown. The increase in prediction accuracy 

in this case (all features and selected features) 

ranged from 10 % to 21 %. In this case, the use of 

any method of feature selection increases the 

accuracy of classification by at least 10 % compared 

to the original dataset, which confirms the 

importance of this procedure for predicting software 

defects based on metric datasets that contain a 

significant number of software code metrics 

measured by different approaches which, however, 

have a strong correlation. 

As we can see from the above, the features we 

have chosen increase the accuracy of software defect 

prediction, and the corresponding code metrics are 

related to its reliability and make it possible to build 

a static model of software reliability based on them. 

In this work, a set of code metrics obtained as the 

most important features in the previous stage and a 

statistical regression method were used to build a 

software reliability model. Because the target 

(dependent) variable is binary – the defects metric, 

which is true or false – logistic regression was 

chosen as the regression method. This type of 

regression is well suited to binary classification 

problems, which in our study means the 

classification of software modules into those that 

contain defects and no defects. 

The resulting logistic regression equation is as 

follows: 

𝑑𝑒𝑓𝑒𝑐𝑡𝑠 =  β1 ∙ 𝑙𝑜𝑐 + β2 ∙ 𝑣(𝑔) + β3 ∙ 𝑁 + β4 ∙ 𝐼
+ β5 ∙ 𝑏𝑟𝑎𝑛𝑐ℎ𝐶𝑜𝑢𝑛𝑡 + β6 ∙ 𝑉  
+ β7 ∙ 𝐸 + β0. 

The values of the regression coefficients are 

shown in Table 2. The accuracy of the prediction of 

this regression equation for the test dataset was 

0.8288, which is fully consistent with the data in 

Table 1. 

As can be seen from Table 2, the greatest 

contribution to the probability that a software 

module contains one or more defects is made by 

McCabe's cyclomatic complexity, the number of 

branches in the program, and the number of Halsted 

operators and operands. This result is in good 

agreement with the conclusions made by one of the 

authors in previous works [23] that the reliability of 

software depends on its complexity, but this 

dependence is complex and includes several factors 

(complexity metrics). 

Table 2. The values of the coefficients of the 

software reliability model 

Coefficient Value 

β0 -0.99489 

β1 8.8409e-03 

β2 -1.7126e-01 

β3 -1.5715e-02 

β4 -7.1093e-03 

β5 8.8159e-02 

β6 2.4233e-03 

β7 7.9552e-07 
   Source: compiled by the authors 

CONCLUSIONS  

The research work is devoted to the 

improvement of static models of software reliability 

by means of machine learning methods for the 

selection of software code metrics that have the 

strongest impact on its reliability. 

The dataset from the PROMISE Software 

Engineering repository, which has been merged 

from the datasets КС1, КС2, PC1, CM1, JM1, has 

been used for research. It contained data on testing 

software modules and 21 code metrics. Boruta, Step-

wise selection, Exhaustive Feature Selection, 

Random Forest Importance, LightGBM Importance, 

Genetic Algorithms, Principal Component Analysis, 

Xverse python  methods have been used to select the 

most important features that affect the quality of 

program code. 

Based on the voting on the results of 

performance of the feature selection methods using 

logistic regression, a static (deterministic) model of 

software reliability has been built, which establishes 

the relationship between the probability of a defect 

in the software module and the metrics of its code. It 

has been shown that this model includes such code 

metrics as loc, n, i, v, e, v(g), branchCount, which 

affect the most on the reliability of the software 

module. The increase in the accuracy of predicting 

defective software modules in the case of using the 

constructed model (compared to the initial data set) 

ranged from 10 % to 21 %. 

A comparison of the effectiveness of 

performance of different feature selection methods 

has been put into practice; in particular, a study of 



Applied Aspects of Information Technology                           2021; Vol. Vol. 4 No. 4: 354–365 

ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 

Software Engineering аnd Systems Analysis 363 

 

the effect of the feature selection method on the 

accuracy of classification has been completed. 

Classification has been performed using the 

following methods: fandom forest; support vector 

machine; k-nearest neighbors; decision tree 

classifier; AdaBoost classifier; Gradient Boosting 

for classification. It has been shown that the use of a 

feature selection method increases the accuracy of 

classification by at least 10 % compared to the 

original dataset, which confirms the importance of 

this procedure for predicting software defects based 

on metric datasets that contain a significant number 

of highly correlated software code metrics. 

It has been found that the best prediction 

accuracy for most classifiers was obtained using a 

set of features obtained from the proposed static 

model of software reliability. In addition, it has been 

shown that it is also possible to use separate 

methods, such as Autoencoder, EFS and PCA with 

an insignificant loss of classification and prediction 

accuracy. 

The issue of cross-project defect prediction 

based on the results obtained in this article is a 

complex scientific task and requires further research. 

However, because different projects have been used 

for research, and software code metrics are widely 

accepted and widely used in software engineering, 

the authors believe that the code metrics they have 

most affected by software reliability are universal 

and can be extended to other software projects.

 

REFERENCES 

1. Chen, X., Gu, Q., Liu, W. S., Liu, S. L. & Ni. C. “Survey of static software defect prediction”. 

Journal of Software (in Chinese). 2016; Vol. 27 No. 1: 1–25. 

2. Sridhar, P. & Mehta, S. “Stacking based ensemble learning for improved software defect 

prediction”. Proceeding of Fifth International Conference on Microelectronics, Computing and 

Communication Systems. 2021. p. 167–178. 

3. Wei, H., Shan, C., Hu, C., Zhang, Y. & Yu, X. “Software defect prediction via deep belief 

network”. Chinese Journal of Electronics. 2019; Vol. 28 No. 5: 925–932. DOI: https://doi.org/10.1049/ 

cje.2019.06.012. 

4. Hu, Changhong, Heqi Wang, Xiangzhi Li, Hailong Liu, Ming Sun & Wu Sun. “Decision-level 

defect prediction based on double focuses”. Chinese Journal of Electronics. 2017; Vol. 26 No. 2: 256–62. 

DOI: https://doi.org/10.1049/cje.2017.01.005. 

5. Asano, T. & Tsunoda, M. “Using bandit algorithms for project selection in cross-project defect 

prediction”. 37th International Conference on Software Maintenance and Evolution (ICSME). 2021. p. 626–

643. 

6. Tang, S., Huang, S., Zheng, C., Liu, E., Zong, C. & Ding, Y. “A novel cross-project software 

defect prediction algorithm based on transfer learning”. Tsinghua Science and Technology. 2020; Vol. 27 

No.1: 41–57. DOI: https://doi.org/10.26599/tst.2020.9010040. 

7. Kumar, L., Kumar, M. & Murthy, L. B. “An empirical study on application of word embedding 

techniques for prediction of software defect severity level”. Proceedings of 16th Conference on Computer 

Science and Intelligence Systems (FedCSIS). 2021. p. 477–484. DOI: https://doi.org/ 10.15439/2021F100/ 

8. Balogun, A. O., Basri, S., Mahamad, S., Abdulkadir, S. J. & Bajeh, A. A. “Impact of feature 

selection methods on the predictive performance of software defect prediction models: An extensive 

empirical study”. Symmetry. 2020; Vol. 12 No. 7: 1147–1156. DOI: https://doi.org/10.3390/sym12071147. 

9. Lei T., Xue J., Wang Y., Niu Z., Shi Z. & Zhang Yu. “WCM-WTrA: A cross-project defect 

prediction method based on feature selection and distance-weight transfer learning”. Chinese Journal of 

Electronics. 2021. p. 133–140. DOI: https://doi.org/ 10.1049/cje.2021.00.119. 

10. Jiarpakdee, J., Tantithamthavorn, C. & Treude, C. “The impact of automated feature selection 

techniques on the interpretation of defect models”. Empirical Software Engineering. 2020; Vol. 25 No. 5: 

3590–3638. DOI: https://doi.org/10.1007/s10664-020-09848-1. 

11. Belouch, M., Elhadaj, S. & Idhammad, M. “A hybrid filter-wrapper feature selection method for 

DDoS detection in cloud computing”. Intelligent Data Analysis. 2018: Vol. 22 No. 6: 1209–1226. 

DOI: https://doi.org/10.3233/ida-173624. 

https://doi.org/10.1049/
https://doi.org/10.26599/tst.2020.9010040


Applied Aspects of Information Technology                            2021; Vol. Vol. 4 No. 4: 354–365 

364 Software Engineering аnd Systems Analysis ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 
 

12. Anbu, M. & Anandha Mala, G. S. “Feature selection using firefly algorithm in software defect 

prediction”. Cluster Computing. 2017; Vol. 22 No. S5: 10925–34. DOI: https://doi.org/10.1007/s10586-017-

1235-3. 

13. Hans Rahul & Harjot Kaur. “Opposition-based enhanced grey wolf optimization algorithm for 

feature selection in breast density classification”. International Journal of Machine Learning and 

Computing. 2020: Vol. 10 No. 3: 458–64. DOI: https://doi.org/10.18178/ijmlc.2020.10.3.957. 

14. Venkatesh, B. & Anuradha, J. “A review of feature selection and its methods”. Cybernetics and 

Information Technologies. 2019; Vol. 19 No. 1: 3–26. DOI: https://doi.org/10.2478/cait-2019-0001. 

15. “Analytics Vishay. Feature selection using wrapper method – Python implementation”. 2020. – 

Available at: https://www.analyticsvidhya.com/blog/2020/10/a-comprehensive-guide-to-feature-selection-

using-wrapper-methods-in-python. – [Accessed: 19 Nov. 2020]. 

16. Mwadulo, M. W. “A review on feature selection methods for classification tasks”. International 

Journal of Computer Applications Technology and Research. 2016; Vol. 5 No. 6: 395–402. 

DOI: https://doi.org/10.7753/ijcatr0506.1013. 

17. Kursa, M. B., Jankowski, A. & Rudnicki, W. R. “Boruta – a system for feature selection”. 

Fundamenta Informaticae. 2010; Vol. 101 No. 4: 271–85. DOI: https://doi.org/10.3233/fi-2010-288. 

18. Kohavi, R. & John, G. H. “Wrappers for feature subset selection”. Artificial Intelligence. 1997; 

Vol. 97 No.1-2: 273–324. DOI: https://doi.org/10.1016/s0004-3702(97)00043-x. 

19. Chen, R. C., Dewi C., Huang S.W., & Caraka, R. E. “Selecting critical features for data 

classification based on machine learning methods”. Journal of Big Data. 2020; Vol. 7 No. 1. 

DOI: https://doi.org/10.1186/s40537-020-00327-4. 

20. Chiesa, M., Maioli, G., Colombo, G. I. & Piacentini L. “GARS: Genetic algorithm for the 

identification of a robust subset of features in high-dimensional datasets”. BMC Bioinformatics. 2020; 

Vol. 54 No.1. DOI: https://doi.org/10.1186/s12859-020-3400-6. 

21. Guo, Q., Wu, W., Massart, D.L., Boucon, C. & de Jong S. “Feature selection in principal 

component analysis of analytical data”. Chemometrics and Intelligent Laboratory Systems. 2002: Vol. 61 

No. 1-2: 123–32. DOI: https://doi.org/10.1016/s0169-7439(01)00203-9. 

22. Goodfellow, I., Bengio, Y. & Courville A. “Deep Learning”. Cambridge, Massachusetts: The MIT 

Press. 2016. 

23. Yakovyna, V. “Method of software reliability analysis considering its complexity”. 

Radioelectronic and Computer Systems. 2015: No. 2 (72): 127–133. 
 

Conflicts of Interest: the authors declare no conflict of interest 

 

Received           14.01.2021 
Received after revision 12.03.2021 
Accepted           17.03.2021 
 

DOI: https://doi.org/10.15276/aait.04.2021.5 

УДК 004.922 

 

Побудова моделі дефектності програм: вибір метрик 

 
Віталій Степанович Яковина1) 2) 

                     ORCID: https://orcid.org/ 0000-0003-0133-8591; yakovyna@matman.uwm.edu.pl. Scopus Author ID: 6602569305  
Іван Ігорович Симець2) 

ORCID: https://orcid.org/ 0000-0003-1873-3168; ivan.i.symets@lpnu.ua. Scopus Author ID: 57202453582 
1) Вармінсько-Мазурський університет в Ольштині, вул. Очаповського, 2. Ольштин, 10-719, Польща 

                                                             2) Національний університет «Львівська політехніка, вул. Степана Бандери, 12. Львів, 79000, Україна  

 

 

АНОТАЦІЯ 
 

Дана стаття націлена на удосконалення статичних моделей надійності ПЗ за рахунок використання методів машинного 

навчання для вибору метрик коду ПЗ, що найсильніше впливають на його надійність. У дослідженні було використано злитий 

https://doi.org/10.1007/s10586-017-1235-3
https://doi.org/10.1007/s10586-017-1235-3
https://doi.org/10.2478/cait-2019-0001
https://doi.org/10.3233/fi-2010-288
https://doi.org/10.1016/s0004-3702(97)00043-x
https://doi.org/10.1186/s40537-020-00327-4
https://doi.org/10.1186/s12859-020-3400-64
https://doi.org/10.1016/s0169-7439(01)00203-9
https://doi.org/
https://orcid.org/0000-0002-3724-430


Applied Aspects of Information Technology                           2021; Vol. Vol. 4 No. 4: 354–365 

ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 

Software Engineering аnd Systems Analysis 365 

 

датасет з репозиторію PROMISE Software Engineering, який містив дані про тестування програмних модулів п’яти програм (КС1, 

КС2, PC1, CM1, JM1) та двадцять одну метрику коду. Для підготовленої вибірки було здійснено вибір найважливіших ознак, які 

впливають на якість програмного коду за допомогою наступних методів вибору ознак: Boruta, Step-wise selection, Exhaustive 

Feature Selection, Random Forest Importance, LightGBM Importance, Genetic Algorithms, Principal Component Analysis, Xverse python. 

На основі голосування за результатами роботи методів вибору ознак побудовано статичну (детерміністичну) модель надійності 

програмного забезпечення, яка встановлює взаємозв’язок між ймовірністю появи дефекту в програмному модулі та метриками 

його коду. Показано, що в цю модель входять такі метрики коду як кількість гілок програми, кількість рядків коду та 

цикломатична складність за МакКейбом, загальна кількість операторів та операндів, інтелект, обсяг та кількість зусиль за 

Холстедом. Здійснено порівняння ефективності роботи різних методів вибору ознак, зокрема проведено дослідження впливу 

методу вибору ознак на точність класифікації із використанням наступних класифікаторів: Random Forest, Support Vector Machine, 

k-Nearest Neighbor, Decision Tree classifier, AdaBoost classifier, Gradient Boosting for classification. Показано, що використання будь-

якого методу вибору ознак підвищує точність класифікації принаймні на десять процентів порівняно з початковим датасетом, що 

підтверджує важливість цієї процедури для прогнозування дефектів програмного забезпечення на основі метричних датасетів, які 

містять значну кількість сильно корелюючих метрик коду ПЗ. Встановлено, що найкращу для більшості класифікаторів точність 

прогнозу вдалось отримати з використанням набору ознак, отриманого із запропонованої статичної моделі надійності ПЗ. Крім 

того, показано, що можливим також є використання окремих методів, таких як Autoencoder, Exhaustive Feature Selection та Principal 

Component Analysis з незначною втратою точності класифікації та прогнозування. 

Ключові слова: надійність програмного забезпечення; машинне навчання; дефект; вибір ознак; прогнозування 

дефектів програмного забезпечення 

 

 

ABOUT THE AUTHORS 

 
 

 
 
 

 

Vitaliy S. Yakovyna – D. Sc. (Eng), Professor of Artificial Intelligence Department of Lviv Polytechnic National 
University, 12, S. Bandera Str. Lviv, 79013, Ukraine 

University of Warmia and Mazury in Olsztyn, 2, Oczapowskiego, St. Olsztyn, 10-719, Poland 

ORCID: https://orcid.org/ 0000-0003-0133-8591; yakovyna@matman.uwm.edu.pl. Scopus Author ID: 6602569305 
Research field: Software reliability; software safety; machine learning 

Віталій Степанович Яковина – доктор технічних наук, професор, професор каф. Систем штучного інтелекту 

Національного університету «Львівська політехніка, вул. Степана Бандери, 12. Львів, 79000, Україна.  
Д-р техніч. наук, професор Вармінсько-Мазурського університету в Ольштині, вул. Очаповська 2. Ольштин, 

10-719, Польща 

 

Ivan I. Symets – PhD Stutent, Assistant of Software Department of Lviv Polytechnic National University, 
12, S. Bandera Str. Lviv, 79013, Ukraine 

ORCID: https://orcid.org/ 0000-0003-1873-3168; ivan.i.symets@lpnu.ua. Scopus Author ID: 57202453582 

Research field: Software reliability; defect prediction in software engineering; artificial intelligence 

Іван Ігорович Симець – аспірант, асистент каф. Програмного забезпечення Національного університету  

«Львівська політехніка, вул. Степана Бандери, 12. Львів, 79000, Україна  

 

 

 

 

 

mailto:yakovyna@matman.uwm.edu.pl
mailto:ivan.i.symets@lpnu.ua

