Applied Aspects of Information Technology 2021; Vol. 4 No. 4: 354-365

DOI: https://doi.org/10.15276/aait.04.2021.5
UDC 004.922

Towards a software defect proneness model:
feature selection

Vitaliy S. Yakovyna®:?
ORCID: https://orcid.org/ 0000-0003-0133-8591; yakovyna@matman.uwm.edu.pl. Scopus Author ID: 6602569305

Ivan I. Symets?

ORCID: https://orcid.org/ 0000-0003-1873-3168; ivan.i.symets@Ipnu.ua. Scopus Author I1D: 57202453582
D University of Warmia and Mazury in Olsztyn, 2, Oczapowskiego, St. Olsztyn, 10-719, Poland

2 Lviv Polytechnic National University, S. Bandery Str. 12, Lviv, 79013, Ukraine

ABSTRACT

This article is focused on improving static models of software reliability based on using machine learning methods to select the
software code metrics that most strongly affect its reliability. The study used a merged dataset from the PROMISE Software
Engineering repository, which contained data on testing software modules of five programs and twenty-one code metrics. For the
prepared sampling, the most important features that affect the quality of software code have been selected using the following
methods of feature selection: Boruta, Stepwise selection, Exhaustive Feature Selection, Random Forest Importance, LightGBM
Importance, Genetic Algorithms, Principal Component Analysis, Xverse python. Basing on the voting on the results of the work of
the methods of feature selection, a static (deterministic) model of software reliability has been built, which establishes the
relationship between the probability of a defect in the software module and the metrics of its code. It has been shown that this model
includes such code metrics as branch count of a program, McCabe’s lines of code and cyclomatic complexity, Halstead’s total
number of operators and operands, intelligence, volume, and effort value. A comparison of the effectiveness of different methods of
feature selection has been put into practice, in particular, a study of the effect of the method of feature selection on the accuracy of
classification using the following classifiers: Random Forest, Support Vector Machine, k-Nearest Neighbors, Decision Tree
classifier, AdaBoost classifier, Gradient Boosting for classification. It has been shown that the use of any method of feature selection
increases the accuracy of classification by at least ten percent compared to the original dataset, which confirms the importance of this
procedure for predicting software defects based on metric datasets that contain a significant number of highly correlated software
code metrics. It has been found that the best accuracy of the forecast for most classifiers was reached using a set of features obtained
from the proposed static model of software reliability. In addition, it has been shown that it is also possible to use separate methods,
such as Autoencoder, Exhaustive Feature Selection and Principal Component Analysis with an insignificant loss of classification and
prediction accuracy.

Keywords: Software reliability; machine learning algorithms; defect; feature selection; software defect prediction

For citation: Yakovyna V. S., Symets I. I. "Towards a software defect proneness model: feature selection". Applied Aspects of
Information Technology. 2021; Vol.4 No.4: 354-365. DOI: https://doi.org/10.15276/aait.04.2021.5

INTRODUCTION

A software defect is a issue in system
components or modules that adversely affects the
appearance, performance, functionality, or
productivity and may result in failure of certain
functionalities or malfunctions of the system. Most

are used to identify potential defects. Traditional
defect detection methods are based on the analysis
of software product metrics and are used to classify
potentially defective modules or to predict the
approximate number of defects in a particular
system module [1]. As a result, the software defects
prediction method can help developers identify

software defects occur during software development
in the source code of the program and are caused by
a number of factors that occur at different stages of
the product life cycle, namely: software code
defects, communication problems, inaccuracies in
software requirements, poor documentation and
design, complexity of a system, deadline for
completion a project, human factor, insufficient
testing, etc.

In order to improve the quality and reliability of
software, methods for predicting software defects,

© Yakovyna V., Symets I., 2021

defects basing on available software metrics using
data analysis techniques, and thus improve software
guality, which, as a result, reduces software
development costs during development and
maintenance.

LITERATURE REVIEW

Relevance of the defect prediction process —
Defect prediction is a popular area of research and is
actively developing as far as it allows reducing the
effort and resources required for software testing.
This is evidenced by the large number of studies and
works in this direction.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

354

Software Engineering and Systems Analysis

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

https://doi.org/
https://orcid.org/0000-0002-3724-430
https://doi.org/

Applied Aspects of Information Technology

2021; Vol. Vol. 4 No. 4: 354-365

In the study [2] a comparative study of different
classification algorithms for the classification of
software modules into those that tend to defect and
not tend to defects has been described. A number of
well-known machine learning algorithms, such as
Decision Trees, Artificial Neural Network (ANN), K
nearest neighbor, SVM and Ensemble Learning have
been considered, where the Stacking Ensemble
technique proved to be the best with the best result
for all data sets with an accuracy of defects
prediction greater than 0.9. The study [3] proposes
the Deep belief network prediction model
(DBNPM), a system for determining whether a
software module contains defects. The key idea of
DBNPM is the Deep belief network (DBN)
technology, which is an effective technique for deep
learning in image and natural language processing,
the characteristics of which are similar to the defects
of the original program.

This study [4] describes the defects prediction
based on the reduction of the scale of the two
focuses (characteristics of defects and defects). It
provides a deep analysis of various key issues
including how to create a set of defects
characteristics comparison and a set of defects
comparison, the repulsion theory for defects and
defects characteristics, as well as a methodology and
a model for defects prediction. Experimental results
demonstrate that this multi-agent predicting
methodology is very effective for predicting the
quality of space projects software.

The defects prediction models can be built
basing on the project data from previous versions or
releases, but in the case of a new project there is no
such data for prediction available, and because of
this, an approach known as cross-project defect
prediction (CPDP) is used. The study [5] describes
the application of the bandit algorithm (BA) to
CPDP in order to select the most suitable training
project from a set of projects. The experiment has
been performed on two data sets (NASA and
DAMB, a total of 12 projects), and it shows that the
use of BA to predict defects in CPDP is promising
and may surpass existing approaches. The study [6]
proposes an algorithm based on TSboostDF transfer
learning. TShoostDF integrates the BLS sampling
method, which is based on sample weight, with the
transfer training method in order to overcome the
drawbacks of traditional algorithms used in CPDP.

Also, in addition to predicting module defects,
it is important to determine the severity level of
software defects, which indicates the affect of an
error on the program performance and how quickly

these errors should be corrected, as far as setting
priorities for these defects manually based on
experience can be an inaccurate severity prediction
which delays correction of critical errors. In the
study [7], methods for automating the assignment of
the appropriate severity level based on the results of
an error report using various methods of word
embedding techniques are described.

Using feature selection in defect prediction —
Using feature selection methods is a good solution to
the problem of high dimension of data sampling and
these methods are actively used in the context of
software defect prediction. There is a large amount
of research on the feature selection in the defect
prediction, the main purpose of which is to choose
the most accurate combination of the method of
feature selection and the algorithm of machine
learning for defects prediction.

In the work [8], 46 methods of defects
prediction have been studied using the Decision Tree
classifier for 25 sets of software defect data from 4
software repositories. The experimental results have
shown that there is no single best FS method, as far
as their respective indicators depend on the choice of
classifiers, performance evaluation indicators and
data set (however, recommendations for the use of
methods have been provided).

The research work [9] focuses on two areas: the
choice of function and the transfer of instances
distance-weight. While reducing the difference
between projects in terms of function engineering, a
transfer learning technology to build an inter-project
model for predicting defects WCM-WtrA and a
model with many sources Multi-WCM-WTTrA have
been introduced. These results show that our method
has an average improvement of 23 % compared to
the TCA + algorithm for AEEEM datasets and an
average improvement of 5 % for ReLink datasets.

In the work [10] 12 automated methods for
selecting features for consistency, correlation,
performance, computational value, and affect on the
size of interpretation have been studied.

Also, along with existing and well-known
methods of feature selection, new methods are being
actively developed. The hybrid multi-filter wrapper
method for feature selection is proposed to select
features in the prediction of a software defect that
combines the advantages of filtering and wrapping
methods [11]. The study [12] proposes to select
features using the Firefly algorithm (FA). Firefly
algorithm is a new evolutionary computational
technique inspired by the firefly flick process. It can
quickly search in the function space for an optimal

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Software Engineering and Systems Analysis

355

Applied Aspects of Information Technology

2021; Vol. Vol. 4 No. 4: 354-365

or near-optimal subset of features to minimize a
particular suitability function. A new method of
wrapping is proposed, which consists of two main
stages of selection of features and classification [13].
The first stage uses Grey Wolf Optimization (GWO)
to find the best characteristics in the defect
identification dataset; the second stage evaluates the
characteristics using a machine classifier of
reference vectors.

Summing up, we can note that in recent years
there has been an increased interest in building static
models of software reliability and prediction
software defects based on code metrics and project
characteristics. As the analysis of the literature
showed, the existing approaches do not have high
enough accuracy of the prediction; there is no
consensus on the impact of software code metrics on
its quality indicators, and in particular, reliability;
the question of transferability of results obtained on
the basis of data on some projects to the
characteristics of other software is open, and,
accordingly, the question of determining the
universal set of metrics of program code that most
correlate with its quality indicators remains relevant.
Therefore, the aim of this work is to improve the
static model of software reliability based on the use
of machine learning methods to select the indicators
of software code that are most correlated with its
reliability.

THE PURPOSE OF THE ARTICLE

This article is aimed at analyzing and
improving static models of software reliability using
machine learning methods to select the software
code metrics that have the strongest affect on its
reliability.

To achieve and study this goal, it is proposed to
consider the following tasks:

1. Prepare a data set from the PROMISE
Software Engineering Repository and combine the
test results of 5 NASA Metrics Data Program
projects.

2. Analyze the methods of feature selection,
apply different methods to a balanced data set and
identify features that are important for the model in
each of the selected methods.

3. Compare different models of machine
learning, such as methods: fandom forest (RF),
support vector machine (SVM), k-nearest neighbors
(KNN), decision tree classifier (DT), AdaBoost
classifier (AB), Gradient Boosting (GB) for analysis
of classification with selected code metrics.

4. Choose the best combination of program
code metrics basing on the accuracy of each

classifier that can be used to effectively predict
system module defects.

DATA SET FOR RESEARCH

During the study the data from the publicly
available PROMISE Software Engineering
Repository have been used. To make the study more
efficient, several data sets have been combined using
code metrics. The following data have been
collected in the NASA Metrics Data Program and
they consist of information on the following
projects:

Project KC1 is a software system written in
C++, which implements resource management on
the reception and processing of terrestrial data.

Project KC2 is a software system written in
C++ that processes scientific data (the other part of
KC1, which is written by another team, and it uses
certain common libraries with KC1).

Project PC1 is a module of a software system
written in C, for controlling the flight of a satellite in
orbit.

Project CM1 is a module written in C to
perform certain functions on a spacecraft.

Project JM1 is a system written in C used for
predictions based on simulations for terrestrial
systems.

The data set for the study consists of 15,123
records, which consist of the 21 code metrics
(Fig.1); the target metric in this study will be the
defects metric, which may contain the value true
(module with the specified metrics with a defect) or
false (module with the specified metrics without a
defect).

No Feature Definition of the feature
1 loc McCabe’s line count of code

2 vig) McCabe’s cyclomatic complexity

3 ev(g) McCabe’s essential complexity

4 iv(g) McCabe’s design complexity

5 n Halstead’s total operators + operands
6 v Halstead’s volume

7 1 Halstead’s program length

8 d Halstead’s difficulty

9 i Halstead’s intelligence

10 | e Halstead’s effort

11 | b Halstead’s delivered bugs

12 |t Halstead’s time estimator

13 | LOCode Halstead’s line count

14 | LOComment Halstead’s count of lines of comments
15 | LOBlank Halstead’s count of blank lines

—
(=)}

LOCodeAndComment| Halstead’s Count of lines of code and comment

17 | Unig Op Halstead’s Unique operators
18 | Uniq Opnd Halstead’s Unique operands
19 | Total Op Halstead’s Total operators
20 | Total Opnd Halstead’s Total operands

(3%
—_

BranchCount Number of branches in the flow graph

Fig. 1. Description of metrics from the

selected dataset
Source: compiled by the authors

356

Software Engineering and Systems Analysis

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2021; Vol. Vol. 4 No. 4: 354-365

The data set is unbalanced and contains 2,665
records of defective modules and 12,458 records of
modules without any defects.

Table 1 shows the distribution of data on

projects.

Table 1. Data distribution on projects

Project | Defective | Modules without | Number of
modules defects modules
KC1 326 1783 2109
KC2 107 415 522
PC1 77 1032 1109
CM1 49 449 498
M1 2106 8779 10885
2 665 12 458 15 123

Source: compiled by the authors

As noted above, the data set is unbalanced with
respect to the value of the defects metric
(2,665/12,458). The effect of unbalanced data in
machine learning is not evident, i.e. it does not cause
an instantaneous error when creating and running a
model, but the results can be false. If the degree of
class misbalance for the majority class is
extraordinary, then a machine-trained classifier can
provide high general prediction accuracy, as far as
the model is likely to predict the majority of samples
belonging to the majority class.

Therefore, for further study, the data have been
balanced as follows — a subset of 5,330 records has
been selected in which the values of the defects
metric have been distributed 50 % to 50 % and
further studies have been performed on this data set.

Eighty percent of the data of 5,330 records have
been used as a balanced training sample, and twenty
percent of the unbalanced data have been used to test
the obtained models.

FEATURE SELECTION PROCESS

Functions or features selection (also known as
variables selection, attributes selection, or selection
of a subset of variables) is the practice of selecting a
subset of the corresponding features (predictors and
variables) for being used in building a model. It is
the automatic selection of attributes present in the
data (for example, columns in the tabular data) that
is the most relevant and appropriate to the problem
of predictive modeling that is being studied.

The purpose of the feature selection in machine
learning is to find the best set of functions that
allows building useful models of the studied
phenomena.

The use of feature selection methods gives us
the following advantages at the output:

e a simpler model — simple models are easy to
explain and understand — a too complex and
incomprehensible model is not valuable;

e shorter learning time — a more precise subset of
functions reduces the amount of time required to
learn the model;

e decrease of variance — increase of the accuracy
of estimates that can be obtained for this
modeling;

e lower memory costs during performance.

As far as we have the defects target feature,
during this study we are going to consider
supervised function selection methods to perform
the feature selection process, which in turn are
divided into Filter methods, Wrapper methods, and
Embedded methods.

Filter methods — These methods are based on
probability theory and statistical approaches, and
usually consider each feature independently. The
main methods in this method class are the following:
Chi-square, 1G-indexing (information gain
calculation), Variance Threshold, Fisher Score,
Anova F-value. They assess the importance of
features only on the basis of their inherent
characteristics, not including any learning algorithm
[14]. The usage of these methods is effective if the
feature set is very large (one hundred or more),
because filtering methods are fast, they may work
well as the first step in selecting in order to exclude
some variables.

As far as our sampling consists of 21 metrics,
the usage of this class of methods will be inefficient
for our study for the feature selection method.

Wrapping methods work by estimating a
subset of functions by means of a machine learning
algorithm that uses a search strategy to view the
space of possible subsets of functions, estimating
each subset based on the performance quality of this
algorithm [15].

Embedded methods perform the process of
functions selections within the construction of the
machine learning algorithm. In other words, they
perform a selection of functions when learning a
model, so we call them embedded methods. This
class of methods implements the advantageous
aspects of the two previous classes of methods.
Unlike wrapping methods, which iteratively
consider unimportant features based on evaluation
metrics, embedded methods perform function
selection and algorithm learning in parallel [16].

All research in this work is performed using the
Python programming language and mainly the

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Software Engineering and Systems Analysis

357

Applied Aspects of Information Technology

2021; Vol. Vol. 4 No. 4: 354-365

sklearn library (Scikit-learn — one of the most widely
used Python packages for Data Science and Machine
Learning. It allows performing many operations and
provides many algorithms for work).

Before starting using the feature selection
methods, it is worth building a data correlation
matrix, as it is a powerful tool for generalizing a
large data set, as well as for determining and
visualizing patterns in the data provided. It is
possible to remove from the set of interrelated
metrics all but one, without significant loss of
information or affect on model quality. The
correlation between metrics was determined for the
study, there is a significant correlation between the
metrics e and t, as well as between the metrics b and
v, the coefficient of which is 1. The correlation
between n (Operator and Operand total (Halstead))
and total_Op is 1, and between n (Operator and
Operand total (Halstead)) and total Opnd the
correlation coefficient is 0.99. There is also a
significant correlation, 0.93, between loc and
I0Code.

Considering these results, it has been decided to
discard the following metrics from our dataset: t, b,
total_Op. total_Opnd, I0Code.

To select features, we have used the following
feature selection methods:

Boruta (Using Random Forest Classifier)

Boruta is a random forest method, so it works
for tree models such as Random Forest or XGBoost,
but also works with other classification models, such
as logistic regression or SVM.

Boruta iteratively removes functions that are
statistically less relevant than a random probe
(artificial noise variables introduced by Boruta
algorithm). The rejected variables in each iteration
are removed from consideration in the next iteration.
As a rule, this results in a good global optimization
of the functions selection [17].

Applying this feature selection method for our
sample, we have determined that the following
metrics are important for further research (Fig. 2):
loc, v(g), iv(G), n, v, i, e, locCodeAndComment,
uniq_Opnd, branchCount.

Step-wise selection

Step-wise selection is a two-way method, based
on a combination of Forward selection and
Backward elimination. It is considered less resource-
consuming as it reconsiders the possibility of adding
predictors back to the model that has been removed

(and vice versa). However, considerations are still
made based on local optimization at any iteration.

from boruta import BorutaPy

import pandas as pd

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

X_train, Xx_test, y_train, y test
= train_test split(X,y,test_size=e0.2,random state=42)

rf = RandomForestClassifier(n_jobs=-1, class_weight="balanced', max_depth=8)
boru_selector = BorutaPy(rf, n_estimators=10@, verbose=1, random_state=1)
boru_selector.fit(X_train.values, y_train.values)

boru_selector.support_
boru_selector.ranking_

Fig. 2. Implementation and results of the
Boruta method
Source: compiled by the authors

As far as this method is based on sequential
addition/subtraction of metrics from the set (it is
necessary to specify their exact number for
selection), the plot_sequential feature selection
library has been used to visualize the estimate at
different values of the k_features parameter in order
to facilitate decision making (Fig. 3). From the given
figures it is visible that the best value of accuracy
metrics is at a choice of 13 metrics which will be
used further: loc, ev(@), iv(G), n, v, I, i, g
I0Comment, locCodeAndComment , branchCount,
uniq_Op, unig_Opnd.

Sequential Forward Selection

Performance
o o o o
o o =] o
@ ~ @]

=]
o
]

=]
o
B

1 23456768 310ND0DD5®IS
Number of Features
Fig. 3. Visualization of the estimate at different
values of the parameter k_features for the Step-

wise method Exhaustive Feature Selection
Source: compiled by the authors

Exhaustive Feature Selection

In the case of Exhaustive Feature Selection, the
efficiency of the machine learning algorithm is
estimated on the basis of all possible combinations
of functions in the data set. A subset of functions
that provides the best performance is selected.
Exhaustive search algorithm is the most resource-
consuming algorithm of all wrapping methods,
because it tests the whole combination of functions
and chooses the best one [18].

358

Software Engineering and Systems Analysis

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2021; Vol. Vol. 4 No. 4: 354-365

Figure 4 shows the implementation of the
method with the choice of the following features for
analysis: loc, v(g), N, V, I, branchCount.

import pandas as pd

from sklearn.model selection import train_test split

from sklearn.ensemble import RandomForestClassifier

from mlxtend.feature_selection import ExhaustiveFeatureSelector as EFS
from sklearn.neighbors import KNeighborsClassifier

X_train, X test, y_train, y test =
train_test split(X,y,test_size=0.2,random_state=42)

knn = KNeighborsClassifier(n_neighbors=3)

efs = EFS(knn,
min_features=1,
max_features=4,
scoring="accuracy’,
print_progress=True,
cv=5)

efs = efs.fit(X, y)

print('Best accuracy score: %.2f' % efsl.best_score)

print('Best subset (indices):', efsl.best_idx)

print('Best subset (corresponding names):', efsl.best_feature_names_)

Fig. 4. Implementation and results of the

Exhaustive Feature Selection method
Source: compiled by the authors

Random Forest Importance

The functions selection by means of a random
forest belongs to the category of embedded methods.

Random forests are a kind of data processing
algorithm that combines a number of decision trees.
Tree-based strategies used by random forests are
naturally ranked according to how well they improve
the cleanliness of a node, or in other words, reduce
impurities (Gini Impurities) over all trees. The nodes
with the lowest decrease in impurities occur at the
beginning of the trees, while the nodes with the
lowest decrease in impurities occur at the end of the
trees. Thus, by pruning trees under a certain node,
we can create a subset of the most important
features [19].

We calculate the importance of the features
using node impurities in each decision tree. In a
random forest, the ultimate importance of the
features is the average value of all the features of the
decision tree.

Applying this method of feature selection for
our sample, we have determined that the following
metrics are important for further research (Fig. 5):
loc, N, V, D, |, E, locCodeAndComment.

This approach is similar to the method
described above (Random Forest Importance), but
basically uses the Light GBM algorithm, because it
also has the attribute feature_importance. Light
GBM is a tree-based learning algorithm, Light GBM
grows a tree vertically, while another algorithm
grows it horizontally, which means that this

algorithm grows on a tree by leaves, while another
algorithm grows by level [19].
from sklearn.feature_selection import SelectFromModel

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split

X_train, X_test, y train, y test =
train_test_split(X,y,test_size=0.2,random_state=42)

rf_model = RandomForestClassifier(n_estimators=508)

embeded rf_selector = SelectFromModel(rf model, max features=16)
embeded_rf_selector.fit(X_train, y_train)

embeded_rf_support = embeded_rf_selector.get_support()

embeded_rf_feature = X.loc[:,embeded_rf_support].columns.tolist()
print(str(len(embeded_rf_feature)), 'selected features")
print(embeded rf feature)

7 selected features

['loc', "N, 'v', 'D', 'I', 'E', 'locCodeAndComment’]

Fig. 5. Implementation and results of the Random

Forest Importance method
Source: compiled by the authors

Light
Importance

Gradient Boosting Machine

Applying this feature selection method for our
sample, we have determined that the following
metrics are important for further study (Fig. 6): loc,
N, V, L, D, I, E, unig_Op.

from sklearn.feature_selection import SelectFromModel
from lightgbm import LGBMClassifier

X_train, X_test, y_train, y_test =
train_test_split(X,y,test_size=e.2,random state=42)

lgbc=LGBMClassifier(n_estimators=500, learning_rate=0.05,
num_leaves=32, colsample_bytree=0.2,
reg_alpha=3, reg_lambda=1, min_split_gain=0.e1, min_child weight=40)

embeded_lgb_selector = SelectFromModel(lgbc, max_features=16)
embeded_lgb_selector.fit(X_train, y_train)

embeded_lgb_support = embeded_lgb_selector.get support()

embeded _1gb_feature = X_train.loc[:,embeded_lgb_support].columns.tolist()
print(str(len(embeded lgb_feature)), 'selected features')
print(embeded_lgb_feature)

8 selected features

[‘loc*, "N, "V, "L', 'D', 'I', 'E', ‘uniq_0p']

Fig. 6. Implementation and results of the Light
GBM method

Source: compiled by the authors

Genetic Algorithms

Genetic algorithms are global optimization
methods for finding very large spaces. They were
inspired by the biological mechanisms of natural
selection and reproduction. They work in all
populations of possible solutions (so-called
generations), where each solution in the search space
is represented as a string of finite length
(chromosome) over a finite set of symbols, which
then uses the target (or suitable) function to estimate
the relevance of each solution [20].

In terms of feature selection, each chromosome
will represent a subset of features, and it will be

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Software Engineering and Systems Analysis

359

Applied Aspects of Information Technology

2021; Vol. Vol. 4 No. 4: 354-365

represented by binary coding: 1 means “select” a
specific feature, and 0 means “do not select” a
feature.

The implementation and results of the use of
this method are shown in Fig. 7, and the following
features are selected for further study: loc, iv(G), I,
IOComment, locCodeAndComment, uniq_Op.

from genetic_selection import GeneticSelectionCvV
from sklearn.model_selection import train_test split
from sklearn.ensemble import RandomForestcClassifier

X_train, X_test, y_train, y_test =

train_test_split(X,y,test_size=6.5,random_state=42)

rf = RandomForestClassifier(n_estimators=160)

selection = Geneticselectioncv(rf,
cv=5, scoring="accuracy",
max_features=6, n_population=10
crossover_proba=0.5, mutation_proba=0.2,
n_generations=56, crossover_independent_proba=6.5,
mutation_independent_proba=6.65, n_gen_no_change=16,
n_jobs=-1)

selection = selection.fit(x_train, y_train
selected_columns = X.columns[selection.support_]

Index(['loc”, 'iv(e)', 'I', 'locomment', 'locCodeAndComment', 'unig_op'], dtype='object')

Fig. 7. Implementation and results of the Genetic
Algorithms method

Source: compiled by the authors

Principal Component Analysis

Principal Component Analysis is a statistical
method for converting large-dimensional data to
low-dimensional data by selecting most important
functions that cover maximum information about the
data set. The characteristics are selected based on the
variance they cause in the original data. The feature
that causes the greatest variance is the first principal
component. The function responsible for the second
largest variance is considered to be the second
principal component, and so on. It is important to
note that the principal components do not have any
correlation with each other [21].

Applying this feature selection method for our
sample, we have determined that the following
metrics are important for further study (Fig. 8): loc,
v(g), ev(9), iv(G), N, V, L, D, I, E.

from sklearn.decomposition import PCA
from sklearn.model_selection import train_test split

X_train, X_test, y_train, y_test =
train test split(X,y,test size=8.2,random state=42)

pca = PCA(n_components=18)
X_train = pca.fit_transform(X_train)
X test = pca.transtform(X test)

explained variance = pca.explained variance ratio

xcolumns = pd.DataFrame(X.columns)
scores = pd.DataFrame(explained_variance)

Fig. 8. Implementation and results of the

Principal Component Analysis method
Source: compiled by the authors

Xverse python for feature selection

Xverse uses different methods for the feature
selection. When the algorithm selects a function, it
votes for that function. Finally, the Xverse calculates
the total number of votes for each feature and then
selects the best ones based on the votes. Thus, we
select the best variables with minimal effort in the
function selection process.

Xverse uses the following methods to select
important features: Information Value using Weight
of evidence; Variable Importance using Random
Forest; Recursive Feature Elimination; Variable
Importance using Extra trees classifier; Chi-Square
best variables; L1 based feature selection.

According to the results of the performance of this
method, we choose the metrics for which the majority
of methods voted (4/6): loc, locCodeAndComment,
unig_Opnd, branchCount, N, I, L.

Autoencoders method (Deep learning)

Deep learning involves the use of neural
networks to create highly effective models of
machine learning. What is particularly interesting
about neural networks is their ability to study the
nonlinear relationships between features. Most of the
traditional methods we have studied do not perform
this: in general, the methods we have considered can
only investigate linear relationships between objects.
This method uses a special neural network
architecture called autoencoders. AutoEncoder is
used for feature selection in order to reveal existing
nonlinear relationships between features.

By means of this method, the following
important features have been identified (Fig. 9) :loc,
v(g), N, branchCount, V, E.

from keras.layers import Dense
from keras.models import Sequential
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y test =
train_test_split(X,y,test_size=8.2,random_state=42)

create the autoencoder.

model = Sequential()

add the encoding layer.

model.add(Dense(16, activation='relu', input_shape=(X_train.shape[1],)))
add the output layer.

model.add(Dense(X_train.shape[1], activation="linear"))

compile the model, you can use whatever optimizer.
model.compile(optimizer="adadelta’, loss='categorical crossentropy')

#fit your model to the training data.

model.fit(X_train, X_train,
epochs=58,batch_size=64,
shuffle=True,validation_data=(X_test, X test))

get the first layer weights.
weights = model.layers[1].get_weights()[@]

Index(['loc', 'v(g)', 'N', 'branchCount', 'Vv', 'E'], dtype='object")

Fig. 9. Implementation and results of the

Autoencoders method
Source: compiled by the authors

360

Software Engineering and Systems Analysis

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2021; Vol. Vol. 4 No. 4: 354-365

RESEARCH RESULTS

Nine feature selection methods have been used
to select features, which differ in their types and
approaches to feature selection:

+ Boruta using Random Forest Classifier (RF)

» Stepwise selection (SWS)

» Exhaustive Feature Selection (EFS)

» Random Forest Importance (RFI)

» LightGBM Importance (LightGBM)

» Genetic Algorithms (GA)

» Principal Component Analysis (PCA)

» Xverse python for feature selection (Xverse)

The results of these methods are shown in
Fig. 10, which describes the number of votes for a
particular feature selected by the methods described
above (1 — the feature has been selected by a feature
selection method, O — not selected).

Feature Boruta | SWS E]

1 1

5 RF1 | LGBM GA PCA

1

Xverse Encoder | Count

o=

N

I

v

E

vig)
branchCount

wv(G)
[loccic |

unig Opnd

L
| __unig Op |

D

1

F
1
1
1
1
0

& [[| = | o= | =
| [on|~a]eo|oa |

ole|le|—=|~[=|=|~

= (o=

S=|=|=|o|e|e|e

olofo|—

o=

olola|=[=|~|o|=|e|a|o|=|~|~
cloelelz oo~ —|~|=|—|~
BT I T IFS PN S S

clof==|=[oa|lolo|lo|=|=|=~

1
1
1
1
1
1
1
o
1
1
1
0
1
1

alelelol——|—|———|—[=—
clolole|e|ele|of=|—

o=

10Comment
evig)

c|o
=
ol
=
=

Fig. 10. Results of the feature selection methods
Source: compiled by the authors

The features (hereinafter this set of features will
be called Important features) which received more
than half of the votes (5/9) have been selected as
important ones. They are loc, N, I, V, E, v(g),
branchCount.

The next step is to compare different models of
machine learning, such as fandom forest; support
vector machine; k-nearest neighbors; decision tree
classifier; AdaBoost classifier; Gradient Boosting
for classification. We are going to compare the
results of the classifiers with different features
selected in the previous step in order to select the
best combination of program code metrics based on
the accuracy of each classifier that can be used to
predict the defect of system modules.

The performance of these classifiers will be
assessed by the accuracy metric. Accuracy is a
metric of how often a learned model is correct, and
classification results are often presented as an error
matrix. The matrix consists of 4 different
combinations of predicted and actual values. The
predicted values are described as positive and
negative, and actual — as true and false (TP — true
positive; TN — true negative; FP — false positive; FN
— false negative).

The accuracy metric shows the following ratio
(the ratio of correct predictions to their total
number):

Accuracy=(TP+TN)/(TP+TN+FP+FN).

Table 2 shows the results of the performance of
classifiers with the accuracy of evaluation for the
features selected by the feature selection methods.
To train the models, 80 % of the data from the total
data sample have been selected and balanced. 20 %
of unbalanced data from the total data sample have
been used for testing, so that the test sample
reflected the real distribution of data in the projects.

Table 1. Results of performance of classifiers with
the accuracy of evaluation for the features

Feature selec- Accuracy

tion RF SVM KNN | DT AB GB
method

Boruta 0.811 0.827 0782 @ 0.778 | 0.793 @ 0.807
SWS 0.782 0797 0.765 0.754 | 0.786 @ 0.776
EFS 0.840 0.852 0.804 @ 0.795 | 0.821 @ 0.841
RFI 0.803 0.820 0.817 @ 0.752 | 0.816 @ 0.800
LGBM 0.812 0.807 0.794 @ 0.771 | 0.803 & 0.820
GA 0.795 0.801 0.780 @ 0.7695 | 0.803 = 0.799
PCA 0821 0.830 0.821 @ 0.799 | 0.842 0.823
Xverse 0.805 0.810 0.789 0.778 | 0.808 @ 0.799
Encoder 0.844 0847 0817 @ 0.766 | 0.823 @ 0.822
Important 0.856 0.838 0.823 0.798 | 0.815 0.860
features

Whole 0.702 0725 0618 @ 0.617 | 0.715 0.691
features

Source: compiled by the authors

The analysis of the table shows that the
important features selected on the basis of voting
from all methods show the highest predicting
accuracy for 4 of the 6 wused classification
algorithms; in the case of SVM, although these
measured features are not the most accurate, they are
still among the three most accurate feature selection
methods, and only for AdaBoost classifier
classification method, the use of this set of features
show slightly worse prediction result after PCA,
Autoencoder, and EFS methods. In addition, the top
three prediction accuracy methods include feature
selection methods such as EFS — the accuracy of five
of the six classification algorithms using this set of
features is in the top three, and in the case of the
SVM method, this accuracy is the highest of all;
Autoencoder — 5 out of 6 classification algorithms
are in the top three in terms of prediction accuracy,
and PCA — 4 out of 6 algorithms are in the top three,
but for two of them (decision tree and AdaBoost
classifier) this accuracy is the highest. Thus, we can
conclude that for this study and the classification
algorithms used, the best accuracy of the prediction
for most classifiers has been obtained using a set of

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Software Engineering and Systems Analysis

361

Applied Aspects of Information Technology

2021; Vol. Vol. 4 No. 4: 354-365

features obtained by voting from all the studied
algorithms. In addition, it has been shown that it is
also possible to use certain methods, such as
Autoencoder, EFS and PCA, with almost no loss of
classification and prediction accuracy. In addition, a
significant increase in the accuracy of software
defect prediction by reducing the sample of features
has been shown. The increase in prediction accuracy
in this case (all features and selected features)
ranged from 10 % to 21 %. In this case, the use of
any method of feature selection increases the
accuracy of classification by at least 10 % compared
to the original dataset, which confirms the
importance of this procedure for predicting software
defects based on metric datasets that contain a
significant number of software code metrics
measured by different approaches which, however,
have a strong correlation.

As we can see from the above, the features we
have chosen increase the accuracy of software defect
prediction, and the corresponding code metrics are
related to its reliability and make it possible to build
a static model of software reliability based on them.
In this work, a set of code metrics obtained as the
most important features in the previous stage and a
statistical regression method were used to build a
software reliability model. Because the target
(dependent) variable is binary — the defects metric,
which is true or false — logistic regression was
chosen as the regression method. This type of
regression is well suited to binary classification
problems, which in our study means the
classification of software modules into those that
contain defects and no defects.

The resulting logistic regression equation is as
follows:

defects = By loc+ By v(g)+B3 N+By-1
+ B5 - branchCount + ¢V
+ B7 " E + Bo.

The values of the regression coefficients are
shown in Table 2. The accuracy of the prediction of
this regression equation for the test dataset was
0.8288, which is fully consistent with the data in
Table 1.

As can be seen from Table 2, the greatest
contribution to the probability that a software
module contains one or more defects is made by
McCabe's cyclomatic complexity, the number of
branches in the program, and the number of Halsted
operators and operands. This result is in good
agreement with the conclusions made by one of the

authors in previous works [23] that the reliability of
software depends on its complexity, but this
dependence is complex and includes several factors
(complexity metrics).

Table 2. The values of the coefficients of the
software reliability model

Coefficient Value

Bo -0.99489

By 8.8409e-03
B, -1.7126e-01
B3 -1.5715e-02
B4 -7.1093e-03
Bs 8.8159%¢e-02
Bs 2.4233e-03
B, 7.9552e-07

Source: compiled by the authors

CONCLUSIONS

The research work is devoted to the
improvement of static models of software reliability
by means of machine learning methods for the
selection of software code metrics that have the
strongest impact on its reliability.

The dataset from the PROMISE Software
Engineering repository, which has been merged
from the datasets KC1, KC2, PC1, CM1, JMI1, has
been used for research. It contained data on testing
software modules and 21 code metrics. Boruta, Step-
wise selection, Exhaustive Feature Selection,
Random Forest Importance, LightGBM Importance,
Genetic Algorithms, Principal Component Analysis,
Xverse python methods have been used to select the
most important features that affect the quality of
program code.

Based on the voting on the results of
performance of the feature selection methods using
logistic regression, a static (deterministic) model of
software reliability has been built, which establishes
the relationship between the probability of a defect
in the software module and the metrics of its code. It
has been shown that this model includes such code
metrics as loc, n, i, v, e, v(g), branchCount, which
affect the most on the reliability of the software
module. The increase in the accuracy of predicting
defective software modules in the case of using the
constructed model (compared to the initial data set)
ranged from 10 % to 21 %.

A comparison of the effectiveness of
performance of different feature selection methods
has been put into practice; in particular, a study of

362

Software Engineering and Systems Analysis

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2021; Vol. Vol. 4 No. 4: 354-365

the effect of the feature selection method on the
accuracy of classification has been completed.

Classification has been performed using the
following methods: fandom forest; support vector
machine; k-nearest neighbors; decision tree
classifier; AdaBoost classifier; Gradient Boosting
for classification. It has been shown that the use of a
feature selection method increases the accuracy of
classification by at least 10 % compared to the
original dataset, which confirms the importance of
this procedure for predicting software defects based
on metric datasets that contain a significant number
of highly correlated software code metrics.

It has been found that the best prediction
accuracy for most classifiers was obtained using a

set of features obtained from the proposed static
model of software reliability. In addition, it has been
shown that it is also possible to use separate
methods, such as Autoencoder, EFS and PCA with
an insignificant loss of classification and prediction
accuracy.

The issue of cross-project defect prediction
based on the results obtained in this article is a
complex scientific task and requires further research.
However, because different projects have been used
for research, and software code metrics are widely
accepted and widely used in software engineering,
the authors believe that the code metrics they have
most affected by software reliability are universal
and can be extended to other software projects.

REFERENCES

1. Chen, X,, Gu, Q., Liu, W. S,, Liu, S. L. & Ni. C. “Survey of static software defect prediction”.
Journal of Software (in Chinese). 2016; Vol. 27 No. 1: 1-25.
2. Sridhar, P. & Mehta, S. “Stacking based ensemble learning for improved software defect

prediction”. Proceeding of Fifth International
Communication Systems. 2021. p. 167-178.

Conference on Microelectronics,

Computing and

3. Wei, H., Shan, C., Hu, C., Zhang, Y. & Yu, X. “Software defect prediction via deep belief
network”. Chinese Journal of Electronics. 2019; Vol. 28 No. 5: 925-932. DOI: https://doi.org/10.1049/

cje.2019.06.012.

4. Hu, Changhong, Heqgi Wang, Xiangzhi Li, Hailong Liu, Ming Sun & Wu Sun. “Decision-level
defect prediction based on double focuses”. Chinese Journal of Electronics. 2017; Vol. 26 No. 2: 256-62.

DOI: https://doi.org/10.1049/cje.2017.01.005.

5. Asano, T. & Tsunoda, M. “Using bandit algorithms for project selection in cross-project defect
prediction”. 37th International Conference on Software Maintenance and Evolution (ICSME). 2021. p. 626—

643.

6. Tang, S., Huang, S., Zheng, C., Liu, E., Zong, C. & Ding, Y. “A novel cross-project software
defect prediction algorithm based on transfer learning”. Tsinghua Science and Technology. 2020; Vol. 27
No.1: 41-57. DOI: https://doi.org/10.26599/tst.2020.9010040.

7. Kumar, L., Kumar, M. & Murthy, L. B. “An empirical study on application of word embedding
techniques for prediction of software defect severity level”. Proceedings of 16th Conference on Computer
Science and Intelligence Systems (FedCSIS). 2021. p. 477-484. DOI: https://doi.org/ 10.15439/2021F100/

8. Balogun, A. O., Basri, S., Mahamad, S., Abdulkadir, S. J. & Bajeh, A. A. “Impact of feature
selection methods on the predictive performance of software defect prediction models: An extensive
empirical study”. Symmetry. 2020; Vol. 12 No. 7: 1147-1156. DOI: https://doi.org/10.3390/sym12071147.

9. Lei T., Xue J, Wang Y., Niu Z., Shi Z. & Zhang Yu. “WCM-WTTrA: A cross-project defect
prediction method based on feature selection and distance-weight transfer learning”. Chinese Journal of
Electronics. 2021. p. 133-140. DOI: https://doi.org/ 10.1049/cje.2021.00.119.

10. Jiarpakdee, J., Tantithamthavorn, C. & Treude, C. “The impact of automated feature selection
techniques on the interpretation of defect models”. Empirical Software Engineering. 2020; Vol. 25 No. 5:
3590-3638. DOI: https://doi.org/10.1007/s10664-020-09848-1.

11. Belouch, M., Elhadaj, S. & Idhammad, M. “A hybrid filter-wrapper feature selection method for
DDoS detection in cloud computing”. Intelligent Data Analysis. 2018: Vol. 22 No. 6: 1209-1226.

DOI: https://doi.org/10.3233/ida-173624.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Software Engineering and Systems Analysis

363

https://doi.org/10.1049/
https://doi.org/10.26599/tst.2020.9010040

Applied Aspects of Information Technology 2021; Vol. Vol. 4 No. 4: 354-365

12. Anbu, M. & Anandha Mala, G. S. “Feature selection using firefly algorithm in software defect
prediction”. Cluster Computing. 2017; Vol. 22 No. S5: 10925-34. DOI: https://doi.org/10.1007/s10586-017-
1235-3.

13. Hans Rahul & Harjot Kaur. “Opposition-based enhanced grey wolf optimization algorithm for
feature selection in breast density classification”. International Journal of Machine Learning and
Computing. 2020: Vol. 10 No. 3: 458-64. DOI: https://doi.org/10.18178/ijmlc.2020.10.3.957.

14. Venkatesh, B. & Anuradha, J. “A review of feature selection and its methods”. Cybernetics and
Information Technologies. 2019; Vol. 19 No. 1: 3-26. DOI: https://doi.org/10.2478/cait-2019-0001.

15. “Analytics Vishay. Feature selection using wrapper method — Python implementation”. 2020. —
Available at: https://www.analyticsvidhya.com/blog/2020/10/a-comprehensive-guide-to-feature-selection-
using-wrapper-methods-in-python. — [Accessed: 19 Nov. 2020].

16. Mwadulo, M. W. “A review on feature selection methods for classification tasks”. International
Journal of Computer Applications Technology and Research. 2016; Vol. 5 No. 6: 395-402.
DOI: https://doi.org/10.7753/ijcatr0506.1013.

17. Kursa, M. B., Jankowski, A. & Rudnicki, W. R. “Boruta — a system for feature selection”.
Fundamenta Informaticae. 2010; Vol. 101 No. 4: 271-85. DOI: https://doi.org/10.3233/fi-2010-288.

18. Kohavi, R. & John, G. H. “Wrappers for feature subset selection”. Artificial Intelligence. 1997;
Vol. 97 No.1-2: 273-324. DOI: https://doi.org/10.1016/s0004-3702(97)00043-X.

19. Chen, R. C., Dewi C., Huang S.W., & Caraka, R. E. “Selecting critical features for data
classification based on machine learning methods”. Journal of Big Data. 2020; Vol. 7 No. 1.
DOI: https://doi.org/10.1186/540537-020-00327-4.

20. Chiesa, M., Maioli, G., Colombo, G. I. & Piacentini L. “GARS: Genetic algorithm for the
identification of a robust subset of features in high-dimensional datasets”. BMC Bioinformatics. 2020;
Vol. 54 No.1. DOI: https://doi.org/10.1186/s12859-020-3400-6.

21. Guo, Q., Wu, W., Massart, D.L., Boucon, C. & de Jong S. “Feature selection in principal
component analysis of analytical data”. Chemometrics and Intelligent Laboratory Systems. 2002: Vol. 61
No. 1-2: 123-32. DOI: https://doi.org/10.1016/s0169-7439(01)00203-9.

22. Goodfellow, I., Bengio, Y. & Courville A. “Deep Learning”. Cambridge, Massachusetts: The MIT
Press. 2016.

23. Yakovyna, V. “Method of software reliability analysis considering its complexity”.
Radioelectronic and Computer Systems. 2015: No. 2 (72): 127-133.

Conflicts of Interest: the authors declare no conflict of interest

Received 14.01.2021
Received after revision 12.03.2021
Accepted 17.03.2021

DOI: https://doi.org/10.15276/aait.04.2021.5
VIIK 004.922

IHo0yxoBa Mmoaei nedeKTHOCTI mMporpamM: BUOIp MEeTPUK

Birauiii Crenanosuu SIxosuna® 2

ORCID: https://orcid.org/ 0000-0003-0133-8591; yakovyna@matman.uwm.edu.pl. Scopus Author ID: 6602569305
Iean Iroposuu Cumenn?

ORCID: https://orcid.org/ 0000-0003-1873-3168; ivan.i.symets@Ipnu.ua. Scopus Author I1D: 57202453582

D Bapmincbko-Masypebkuii yHiBepeuteT B OnbiutuHi, By1. O4ganosebkoro, 2. Onbiutus, 10-719, TTonbuia

2) HarioHasbHHIA yHiBepcuteT «JIbBiBCchKa moitTexHika, Byl Crenana banaepu, 12. JIbsis, 79000, Ykpaina

AHOTANIA

Jlana craTTs HalieHa Ha YJOCKOHAJICHHsS CTaTUYHUX Mojeneill HaxiiiHocti 13 3a paxyHOK BHKOPHCTaHHS METOZIB MAIIMHHOTO
HaBYaHHS /Ul BUOOPY METpuK Koy 13, 110 HalicuibHille BIUIMBAIOTh HA HOTO HafiiiHICTh. Y JOCIiIKeHHI OyJI0 BUKOPHUCTAHO 3JIHTHH

364 Software Engineering and Systems Analysis ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

https://doi.org/10.1007/s10586-017-1235-3
https://doi.org/10.1007/s10586-017-1235-3
https://doi.org/10.2478/cait-2019-0001
https://doi.org/10.3233/fi-2010-288
https://doi.org/10.1016/s0004-3702(97)00043-x
https://doi.org/10.1186/s40537-020-00327-4
https://doi.org/10.1186/s12859-020-3400-64
https://doi.org/10.1016/s0169-7439(01)00203-9
https://doi.org/
https://orcid.org/0000-0002-3724-430

Applied Aspects of Information Technology 2021; Vol. Vol. 4 No. 4: 354-365

naracer 3 periosutopito PROMISE Software Engineering, sikuii MicTHB JJaHi PO TeCTyBaHHS IPOrpaMHUX MoxyiiB 11’sity iporpam (KC1,
KC2, PC1, CM1, JM1) Ta nBaqusth oHy METpUKY Koxy. [t minrorosneHoi BUOIpkH Oyio 3ailicHeHO BHOip HAlBOXKIMBIIINX O3HAK, SIKi
BIUIMBAIOTh HA SIKICTh IPOrPaMHOrO KOy 3a JIOIIOMOIOI0 HACTYIIHHX METOAIB BHOOpy o3Hak: Boruta, Step-wise selection, Exhaustive
Feature Selection, Random Forest Importance, LightGBM Importance, Genetic Algorithms, Principal Component Analysis, Xverse python.
Ha ocHoBi roocyBaHHS 3a pe3yibTaTaMH poOOTH METOIIB BHOOPY O3HAK MOOYJOBAHO CTaTUYHY (IETEPMIHICTHYHY) MOJENb HAamiHHOCTI
MPOrPaMHOro 3a0e3MeyYeHHs, sIKa BCTAHOBIIIOE B3a€MO3B 30K MK WMOBIPHICTIO MOSIBU JIeheKTy B MPOrPaMHOMY MOJYJI Ta METPHKaMU
roro koxy. Iloka3zaHo, 10 B L0 MOJIENh BXOMAITh TaKi METPHKHM KOAY SIK KUIBKICTh TUIOK NPOrpaMH, KUIBKICTh PAAKIB KOAy Ta
LUKIOMAaTH4YHA CKIamHicTh 3a MaxKeiibom, 3aranbHa KiIBKICTH OINEpaToOpiB Ta ONEPAHIIB, IHTEIEKT, OOCAT Ta KUIBKICTh 3yCHIb 32
XoncrenoM. 3miiCHEHO TOPIBHSAHHS e(EKTUBHOCTI POOOTH DI3HMX METOZIB BHOOPY O3HAK, 30KpeMa IPOBENECHO IOCIIDKEHHS BILIHBY
METO/ly BHOOpY O3HaK Ha TOYHICTh KiIacH(ikallii i3 BAKOPHCTaHHSM HAaCTYIHHUX Kiacubikaropis: Random Forest, Support Vector Machine,
k-Nearest Neighbor, Decision Tree classifier, AdaBoost classifier, Gradient Boosting for classification. [Toka3aHo, 110 BUKOpUCTaHHS Oy/1b-
SIKOTO METOy BHOOpPY O3HAK ITiBUIIYe TOUHICTh KiacH(ikanil mprHaiiMHI Ha JecATh NPOLEHTIB IOPIBHSIHO 3 IIOYAaTKOBUM JaTaceToM, IIo
MATBEPIDKYE BAKIIUBICTD L€l IPOIIELYPH UL IPOTHO3YBaHHS e(EKTIB MPOrpaMHOro 3abe3nedeHHs] HA OCHOBI METPHYHHUX JaTaceTiB, sKi
MICTATh 3HAYHY KiJIbKICTh CHJIBHO KOPENIOIoUHMX MeTpHuK Koay [13. BeranoBneHo, mo Haiikparty 1uist OiIbIIocTi Kiaacu(ikaTopiB TOUHICTD
MPOTHO3Y BAAJIOCH OTPHMATH 3 BUKOPUCTAHHAM HaOOpY O3HAK, OTPUMAHOTO i3 3alpoIrOHOBaHOi cTaTHYHOi Mozeni HaxiiHocTi I13. Kpim
TOTO, MIOKa3aHo, 1[0 MOX/IMBUM TaKOX € BUKOPUCTAHHSI OKPEMUX METO/IiB, Takux sik Autoencoder, Exhaustive Feature Selection Ta Principal
Component Analysis 3 He3HAYHOIO BTPaTO0 TOYHOCTI KIacH(iKallii Ta IPOrHO3yBaHHSI.

KonrouoBi ciioBa: HaniifHiCT IporpaMHOro 3a0e3leyeHHs; MallMHHE HaBUaHHS, AedekT; BHOIp O3HAK; IPOTHO3YBAaHHS
JIe(eKTiB IPOTrpaMHOTO 3a0e3MCUCHHS

ABOUT THE AUTHORS

Vitaliy S. Yakovyna — D. Sc. (Eng), Professor of Atrtificial Intelligence Department of Lviv Polytechnic National
University, 12, S. Bandera Str. Lviv, 79013, Ukraine

University of Warmia and Mazury in Olsztyn, 2, Oczapowskiego, St. Olsztyn, 10-719, Poland

ORCID: https://orcid.org/ 0000-0003-0133-8591; yakovyna@matman.uwm.edu.pl. Scopus Author ID: 6602569305
Research field: Software reliability; software safety; machine learning

Birtaiit CrenanoBu4 SIkoBHHA — TOKTOp TEXHIYHHX HayK, mpodecop, mpodecop kad. CHCTEM ITYYHOTO IHTENEKTY
HamionansHoro yHiBepcurety «JIpBiBcbKa nomiTexHika, Byln. Ctenana bannepn, 12. JIesis, 79000, Ykpaina.

-p TexHi4. Hayk, npopecop Bapminceko-Masypcbkoro yHiBepcurery B OnbiuThHI, Bya. OuanoBcbka 2. ONBIITHH,
10-719, Monbiua

Ivan I. Symets — PhD Stutent, Assistant of Software Department of Lviv Polytechnic National University,
12, S. Bandera Str. Lviv, 79013, Ukraine

ORCID: https://orcid.org/ 0000-0003-1873-3168; ivan.i.symets@ Ipnu.ua. Scopus Author ID: 57202453582
Research field: Software reliability; defect prediction in software engineering; artificial intelligence

IBan IropoBuy Cumennb — acnipanT, acucteHT kad. [Iporpamuoro 3a6e3neuenns HarionansHOro yHiBepcHTETY
«JIpBiBCchKa HoJTiTexHiKa, Byl. Ctenana bannepu, 12. JIeBiB, 79000, Ykpaina

ISSN 2617-4316 (Print) Software Engineering and Systems Analysis 365
ISSN 2663-7723 (Online)

mailto:yakovyna@matman.uwm.edu.pl
mailto:ivan.i.symets@lpnu.ua

