1. BSRIA. “The Smart Building Market in Asia will exceed $1036bn by 2020”. – Available from: https://www.bsria.co.uk/news/article/the-smart-building-market-in-asia-will-exceed-$1,036bn-by-2020. – [Accessed Feb 2021].
2. So, A. T. P. & Wong, K. C. “On the Quantitative Assessment of Intelligent Buildings”. Facilities. 2002; Vol. 20 No. 5/6: 208–216. DOI: https://doi.org/10.1108/02632770210435206.
3. Azevedo Guedes, A. L., Carvalho Alvarenga, J., Dos Santos Sgarbi Goulart, M., Rodriguez y Rodri guez, M. V. & Pereira Soares, C. A. “Smart Cities: The Main Drivers for Increasing the Intelligence of Cit ies”. Sustainability. 2018; Vol. 10. 3121. DOI: https://doi.org/10.3390/su10093121.
4. Antoshchuk, S. G., Shamin, I. I., Sharma, B. S. & Shcherbakova, G. Yu. “A Multi-Objective Optimi zation Problems of Clustering Protocols for Wireless Sensor Networks Using Meta-Heuristic Techniques”. Herald of Advanced Information Technology. Publ. Nauka i Tekhnika. Odesa: Ukraine. 2018; Vol. 1 No. 1: 21–27. DOI: https://doi.org/ 10.15276/hait.01.2018.2.
5. Lima, E. G., Chinelli, C. K., Guedes, A. L. A., Vazquez, E. G., Hammad, A. W. A., Haddad, A. N. & Soares, C. A. P. “Smart and Sustainable Сities: The Main Guidelines of City Statute for Increasing the Intel ligence of Brazilian Cities”. Sustainability. 2020; Vol. 12 No. 3. 1025. DOI: https://doi.org/ 10.3390/su12031025.
6. McGlinn, K., O’Neill, E., Gibney, A., O’Sullivan, D. & Lewis, D. “Simcon: A Tool to Support Rapid Evaluation of Smart Building Application Design Using Context Simulation and Virtual Reality”. Journal of Universal Computer Science. 2010; Vol. 16 No. 15: 1992–2018. DOI: https://doi.org/10.3217/jucs-016-15- 1992.
7. Assunção, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A. & Buyya, R. “Big Data Computing and Clouds: Trends and Future Directions”. Journal of Parallel and Distributed Computing. 2015; Vol. 79-80: 3–15. DOI: https://doi.org/10.1016/j.jpdc.2014.08.003.
8. Stojmenovic, I. & Wen, S. “The Fog Computing Paradigm: Scenarios and Security Issues”, Proceed ings of the 2014 Federated Conference on Computer Science and Information Systems. 2014; Vol. 2: 1– 8. DOI: https://doi.org/10.15439/2014F503.
9. Dastjerdi, A. V., Gupta, H., Calheiros, R. N., Ghosh, S. K. & Buyya, R. “Fog Computing: Principles, Architectures and Applications”. Internet of Things, Principles and Paradigms. 2016: p. 61–75. DOI: https://doi.org/10.1016/B978-0-12-805395-9.00004-6.
10. Mukherjee, M., Matam, R., Shu, L., Maglaras, L., Ferrag, M., A. Choudhury, N. & Kumar, V. “Se curity and Privacy in Fog Computing: Challenges”. IEEE Access. 2017; Vol. 5: 19293–19304. DOI: https://doi.org/10.1109/ACCESS.2017.2749422.
11. Khan, S., Parkinson, S. & Qin, Y. “Fog Computing Security: A Review of Current Applications and Security Solutions”. Journal of Cloud Computing. 2017; Vol. 6 No. 19. DOI: https://doi.org/ 10.1186/s13677-017-0090-3.
12. Bonomi, F., Milito, R., Zhu, J. & Addepalli, S. “Fog Computing and its Role in the Internet of Things”. Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing. 2012. р. 13–16. DOI: https://doi.org/10.1145/2342509.2342513.
13. Sareen, P. & Kumar, P. “The Fog Computing Paradigm”. International Journal of Engineering & Technology. 2016; Vol. 4 No. 8: 55–60.
14. Vaquero, L. M. & Rodero-Merino, L. “Finding Your Way in the Fog: Towards a Comprehensive Definition of Fog Computing”. ACM SIGCOMM Computer Communication Review. 2014; Vol. 44 No. 5: 27–32. DOI: https://doi.org/10.1145/2677046.2677052.
15. Saharan, K. P. & Kumar, A. “Fog in Comparison to Cloud: A Survey”. International Journal of Computer Applications. 2015; Vol. 122 No. 3: 10–12. DOI: https://doi.org/10.5120/21679-4773.
16. Antoshchuk, S. G., Lobachev, I. M. & Maleryk, R. P. “Method of the Sensor Network Resources Allocation in the Conditions of Edge Computing”. Herald of Advanced Information Technology. Publ. Nau ka i Tekhnika. Odesa: Ukraine. 2018; Vol. 1 No. 1: 28–35. DOI: https://doi.org/10.15276/hait.01.2018.3.
17. Shi, W., Cao, J., Zhang, Q., Li, Y. & Xu, L. “Edge Computing: Vision and Challenges”. IEEE In ternet Things Journal. 2016; Vol. 3 No. 5: 637–646. DOI: https://doi.org/10.1109/JIOT.2016.2579198.
18. Mahmud, R., Kotagiri, R. & Buyya, R. “Fog Computing: A Taxonomy, Survey and Future Direc tions”. Internet of Everything. 2018: 103–130. DOI: https://doi.org/10.1007/978-981-10-5861-5_5.
19. Kamath, G., Agnihotri P., Valero, M., Sarker, K. & Song, W.-Z. “Pushing Analytics to the Edge”. IEEE Global Communications Conference (GLOBECOM). 2016. p. 1–6. DOI: https://doi.org/10.1109/ GLOCOM.2016.7842181.
20. Azimi, I., Anzanpour, A., Rahmani, A. M., Liljeberg, P. & Salakoski T. “Medical Warning System Based on Internet of Things Using Fog Computing”. International Workshop on Big Data and Information Security (IWBIS). 2016. р. 19–24. DOI: https://doi.org/10.1109/IWBIS.2016.7872884.
21. Lu, L., Xu, L., Xu, B., Li, G. & Cai, H. “Fog Computing Approach for Music Cognition System Based on Machine Learning Algorithm”. IEEE Transactions on Computational Social Systems. 2018; Vol. 5 No. 4: 1142–1151. DOI: https://doi.org/10.1109/TCSS.2018.2871694.
22. Li, L., Ota, K. & Dong M. “Deep Learning for Smart Industry: Efficient Manufacture Inspection Sys tem with Fog Computing”. IEEE Transactions on Industrial Informatics. 2018; Vol. 14 No. 10: 4665–4673. DOI: https://doi.org/10.1109/TII.2018.2842821.
23. Sheremet, O. I., Korobov, O. Ye., Sadovoi, O. V. & Sokhina, Y. V. “Intelligent System Based on a Convolutional Neural Network for Identifying People Without Breathing Masks”. Applied Aspects of Infor mation Technology. Publ. Nauka i Tekhnika. Odesa: Ukraine. 2020; Vol.3 No.3: 133–144. DOI: https://doi.org/10.15276/aait.03.2020.2.
24. Pérez, J. L., Gutierrez-Torre, A., Berral, J. L. & Carrera D. “A Resilient and Distributed Near Real time Traffic Forecasting Application for Fog Computing Environments”. Future Generation Computer Sys tems. 2018; Vol. 87: 198–212. DOI: https://doi.org/10.1016/j.future.2018.05.013.
25. Kimovski, D., Ijaz, H., Saurabh, N. & Prodan R. “Adaptive Nature-inspired Fog Architecture”, IEEE 2nd International Conference on Fog and Edge Computing (ICFEC). 2018. р. 1–8. DOI: https://doi.org/ 10.1109/CFEC.2018.8358723.
26. Lu, J., Xiang, X., Shen, D., Chen, G., Chen, N., Blasch, E., Pham K. & Chen, Y. “Artificial Intelli gence Based Directional Mesh Network Design for Spectrum Efficiency”. IEEE Aerospace Conference. 2018. р. 1–9. DOI: https://doi.org/ 10.1109/AERO.2018.8396558.
27. Costa, R., Jardim-Goncalves, R., Figueiras, P., Forcolin, M., Jermol, M. & Stevens R. ‘‘Smart Car go for Multimodal Freight Transport: When ‘Cloud’ Becomes ‘Fog’’. IFAC-PapersOnLine. 2016; Vol. 49 No. 12: 121–126. DOI: https://doi.org/10.1016/j.ifacol.2016.07.561.
28. Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T. S., Kjaergaard M. B., Dey, A., Sonne, T. & Jensen M. M. “Smart Devices are Different: Assessing and Mitigating Mobile Sensing Heterogeneities for Activity Recognition”. SenSys '15: Proceedings of the 13th ACM Conference on Embedded Networked Sen sor Systems. 2015. p. 127–140. DOI: https://doi.org/10.1145/2809695.2809718.
29. Figo, D., Diniz, P. C., Ferreira, D. R. & Cardoso, J. M. “Preprocessing Techniques for Context Recognition from Accelerometer Data”. Personal and Ubiquitous Computing. 2010; Vol. 14: 645–662. DOI: https://doi.org/10.1007/s00779-010-0293-9.
30. Hammerla, N. Y., Kirkham, R., Andras, P. & Ploetz, T. “On Preserving Statistical Characteristics of Accelerometry Data Using Their Empirical Cumulative Distribution”. ISWC '13: Proceedings of the 2013 International Symposium on Wearable Computers. 2013. р. 65–68. DOI: https://doi.org/ 10.1145/2493988.2494353.
31. Bhattacharya, S. & Lane, N. D. “From Smart to Deep: Robust Activity Recognition on Smartwatch es Using Deep Learning”. IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops). 2016. р. 1–6. DOI: https://doi.org/ 10.1109/PERCOMW.2016.7457169.
32. Radu, V., Lane, N. D., Bhattacharya, S., Mascolo, C., Marina, M. K. & Kawsar, F. “Towards Multi modal Deep Learning for Activity Recognition on Mobile Devices”. UbiComp '16: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. 2016. р. 185–188. DOI: https://doi.org/10.1145/2968219.2971461.
33. Thang, H. M., Viet, V. Q., Thuc, N. D. & Choi, D. “Gait Identification Using Accelerometer on Mobile Ohone”. International Conference on Control, Automation and Information Sciences (ICCAIS). 2012. р. 344–348. DOI: https://doi.org/10.1109/ICCAIS.2012.6466615.
34. Gadaleta, M. & Rossi, M. “Idnet: Smartphone-based Gait Recognition with Convolutional Neural Networks”.
Pattern Recognition. 2018; Vol. 74: 25–37. DOI: https://doi.org/10.1016/j.patcog.2017.09.005.