Scientific Journal

Applied Aspects of Information Technology


Modern practice of the development of technical systems, and electrical engineering in particular, shows that their reliability is laid at the design stage and is ensured at the stage of production. The imperfection of production technology and violation of operating modes can lead to the appearance of various defects in the finished systems. Thus, the diagnosis of a technical object (system) must necessarily be present at all stages of its life cycle. Therefore, various works on ensuring the process of diagnosing the technical system is carried out in its design, manufacturing, testing and operation. At the same time, the purpose of the diagnosis is to maintain the necessary level of indicators of the technical state of the system. At the design stage, the main task of diagnosing is to provide the possibility of a potential diagnosis of the system being designed, and at the stage of production and operation, the current control of its performance. The constant increase in the complexity of technical systems, due to the increase and complication of the functions performed, the improvement of production technology, the increase of requirements to quality indicators, etc., leads to the complication of methods and diagnostic tools that provide the necessary properties of systems For the diagnosis of electrical devices, methods such as: peripheral scanning, automatic generation of samples, built-in self-scanning, as well as methods of parametric identification, fault control methods, evaluation methods, etc. are used. Many of these methods are characterized by the following disadvantages: significant amount of computations, the need to access all nodes of the electrical circuit, the sensitivity to the errors of the calculations, and, as a consequence, the complexity of practical implementation. In addition, a significant spread in the diagnosis of electrical devices acquired a method of reference, based on the finding of a set of values of voltages or currents at the control points of those of them closest to the values obtained during measurement in the device being diagnosed. Despite the considerable achievements in the field of diagnosing the technical state of the systems, the relevance of theoretical research and the practical application of diagnostic methods as the basic principles for ensuring the necessary quality indicators of systems (and electrotechnical, in particular) and increasing the reliability of estimates of the technical condition of the latter remains determinative at the present time. Conditions of independent monitoring and control are considered and investigated, which ensure the possibility of conducting a diagnostic experiment without the withdrawal of a controlled system from operation.


1. Aleksandrovskaja, L. N., Afanas’eva, A. P., & Lisov, A. A. (2006). Sovremennye metody obespechenija bezotkaznosti slozhnyh tehnicheskih sys-tem [Modern methods of ensuring the reliability of complex technical systems], Moscow, Russian Fed-eration, Logos Publ., 208 p. (in Russian).

2. Bondarenko, V. M., Redkovec, S. N., & Kashpirovskiy, A. I. (1985). Matrichnye metody diag-nostiki electricheskih cepey [Matrix methods for the diagnosis of electrical circuits], Kyiv, Ukraine, Izd. dom “Teoreticheskaja electrodinamika”. Publ., No. 6, pp. 71-77 (in Russian).

3. Butyrin, P. A., & Vas’kovskaja, T. A. (2000). Diagnostika slozhnyh electricheskih cepey po chastjam [Diagnosis of complex electrical circuits in parts], Moscow, Russian Federation, Izd. dom “Izv. RAN Energetika”. Publ., No. 2, pp. 136-137 (in Russian).

4. Kornouzhenko, E. K. (1985). Poisk neis-pravnyh component v lineynyh systemah [Finding faulty components in linear systems], Avtomatika i telemehanika. Moscow, Russian Federation, Izd. dom “Avtomatika i telemehanika”. Publ., No. 3, pp. 104-110.

5. Kulik, A. S. (1987). Diagnostiruemost lineyn-yh nepreryvnyh system [Diagnosability of linear con-tinuous systems], Avtomatika i telemehanika. Moscow, Russian Federation, Izd. dom “Avtomatika i telemehanika”. Publ., No. 6, pp. 148-155 (in Rus-sian).

6. Lomakina, L. S. (2015). Metodologicheskie aspecty diagnostirovanija sostojanija tehnicheskih system [Methodological aspects of diagnosing the state of technical and software systems], Fundamentalnye issledovanija, “Fundamentalnye issledovanija”, Publ., Moscow, Russian Federation, No. 12-2, pp. 287-304 (in Russian).

7. Catelani, M., & Fort, A. (2002). “Soft fault detection and isolation in analog circuits: some re-sults and a comparison between a fuzzy approach and radial basis function networks”, Int. IEEE

Transactions on Instrumentation and Measurement, Vol. 51, Issue 2, Apr 2002. pp. 196-202, DOI: 10.1109/19.997811.

8. Huang, W. H., & Wey, C. L. (1998). “Wey .Diagnosability analysis of analogue circuits”, Int. Journal Circuit Theory and Aplplications, Vol. 26, Issue 5, December 1998, pp. 439-451.

9. Jung, D. E., Krysander, M., & Frisk, E. (2013). “A method for quantitative fault diagnosabil-ity analysis of stochastic linear descriptor models”, Int. Journ. Automatica 49(6), pp. 1591-1600, DOI: 10.1016/j.automatica. 2013.02.045.

10. Kabisatpathy, P., Barua, A., & Sinha, S. (2004). “Fault detection and diagnosis in analog in-tegrated circuits using artificial neural network in a pseudorandom testing scheme”, int. IEEE 3-rd In-ternational Conference on Electrical & Computer Engineering ICECE 2004, 28-30 December 2004, pp. 52-56.

11. Verlan, A. A. (2008). Analiz diagno-stiruemosti ob’ektov s perestraivaemoy strukturoy [Analysis of the diagnosability of objects with a tun-able structure], Modeluvannja ta informaciyni tehtologii. Zb. nauk. prac. IPME im. G. E. Puhova NAN Ukainy, Kyiv, Ukraine, Izd. dom “Mod-eluvannja ta informaciyni tehtologii. Publ., Zb. nauk. prac. IPME im. G. E. Puhova NAN Ukainy”. Vol. 45, pp. 3-9 (in Russian).

12. Verlan, A. A., Polozhaenko, S. A., & Os-man, I. H. (2007). Decompozicionnyy metod local-izaciy neispravnyh electronnyh podshem [Decompo-sition method for localization of faulty electronic subcircuits], Electromashinostroenie i electroobo-rudovanie. Odessa, Ukraine, Izd. dom “Electromashinostroenie i electrooborudovanie”, Publ., Vol. 69, pp. 72-76 (in Russian).

13. Verlan, A. A., Polozhaenko, S. A., & Os-man, I. H. (2008). Localizacija neispravnyh electronnyh podshem metodom obuchajuzhchih I proverochnyh harac-teristik [Localization of faulty electronic subschemes by the method of training and verification character-istics], Matematychne ta komp’uterne modeljuvann-ja. Serija: Tehn. nauky: zb. nauk. prac. Kam’janec-Podil’s’kiy, Ukraine, Izd. dom “Matema-tychne ta komp’uterne modeljuvannja. Publ. Serija: Tehn. nauky: zb. nauk. prac. – Kam’janec-Podil’s’kiy: Kam’janec-Podil’s’kiy nacion. Universitet im. Ivana Ogienka”, Vol. 1, pp. 140-144 (in Russian).

14. Verlan, A. A., Sterten, Jo., & Polozhaenko, S. A. (2016). Formalizacija predstavlenija posledovatel’nosti testovyh gipotez pri diagnostiro-vanii electronnyh shem [Formalization of the presentation of the sequence of test hypotheses when diagnosing electronic circuits], Informatics and Mathematical Methods in Simulation, Odessa, Ukraine, Izd. dom “Informatics and Mathematical Methods in Simulation”, Publ., Vol. 6, No. 4, pp. 315-321 (in Russian).

15. Verlan, A., & Polozhaenko, S. (2018). “Formalization of Representation of Sequence of Test Hypotheses In Diagnosing Electronic Schemes”, Proceedings of the 2018 IEEE 38-th In-ternational Conference, “Electronics and Nanotech-nology” (IEEE Xplore Digital Library), pp. 548-552.

16. Polozhaenko, S. A., & Prokof’eva, L. L. (2018). Planuvannja diagnostychnogo eksperymentu pry localizacii nespravnostey pidshem bezinerciynyh system [Planning a diagnostic experiment for locali-zation of malfunctions of subsystems of inertial sys-tems, Informatyka ta mathematychni metody v mod-eljuvanni]. Odessa, Ukraine, Izd. dom “Informatyka ta mathematychni metody v modeljuvanni”, Publ., Vol. 8, No. 1, pp. 5-16 (in Ukrainian).

17. Verlan, A. F., & Polozhaenko, S. A. (2017). Lokalizacija neispravnyh fragmentov pri diag-nostirovanii bezinercionnyh system [Localization of faulty fragments in the diagnosis of inertialess sys-tems], Electrotehnichni ta comp’yuterni systemy. Special’nyy vypusk. Izd. dom “Astroprint”, Publ., pp. 439-445 (in Russian).

Last download:
19 June 2022


[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2018.]